Field Evaluation of Almond Rootstocks

Field Evaluation of Almond Rootstocks for Stanislaus County – Roger Duncan, UCCE Stanislaus County

Trial #1: Field Evaluation of Sixteen Rootstocks in an Unfumigated, Sandy Loam, Replant Location

Keyes, CA. Cooperators: Christine & Peter Bacon, Eric Gemperle

Trial specifics:

•Planted January, 2003

•2nd generation orchard following nemaguard

•No pre-plant fumigation, fallowed one year

•Hanford sandy loam, pH 6.9 – 7.6

General Conclusions After Twelve Years

Peach rootstocks, especially Nemaguard, can take up very high levels of sodium and chloride, leading to salt toxicity.

>Atlas and Krymsk 86 are as susceptible to sodium and chloride as the peach rootstocks.

> Many of the peach x almond hybrids are the most tolerant of saline conditions while Viking is intermediate.

Empyrean 101 is as vigorous and appears to be as salt tolerant as the peach x almond hybrid rootstocks.

Lovell, Nemaguard, Guardian and Krymsk 86 showed the most severe lime-induced leaf chlorosis.

>In general, the peach x almond hybrid rootstocks are the most vigorous and plum rootstocks are the smallest while peach rootstocks are of intermediate size.

Yield per acre is directly related to tree size; the bigger the tree, the higher the yield.

The exception: Atlas has consistently outyielded Nemaguard, although the trees are of similar size.

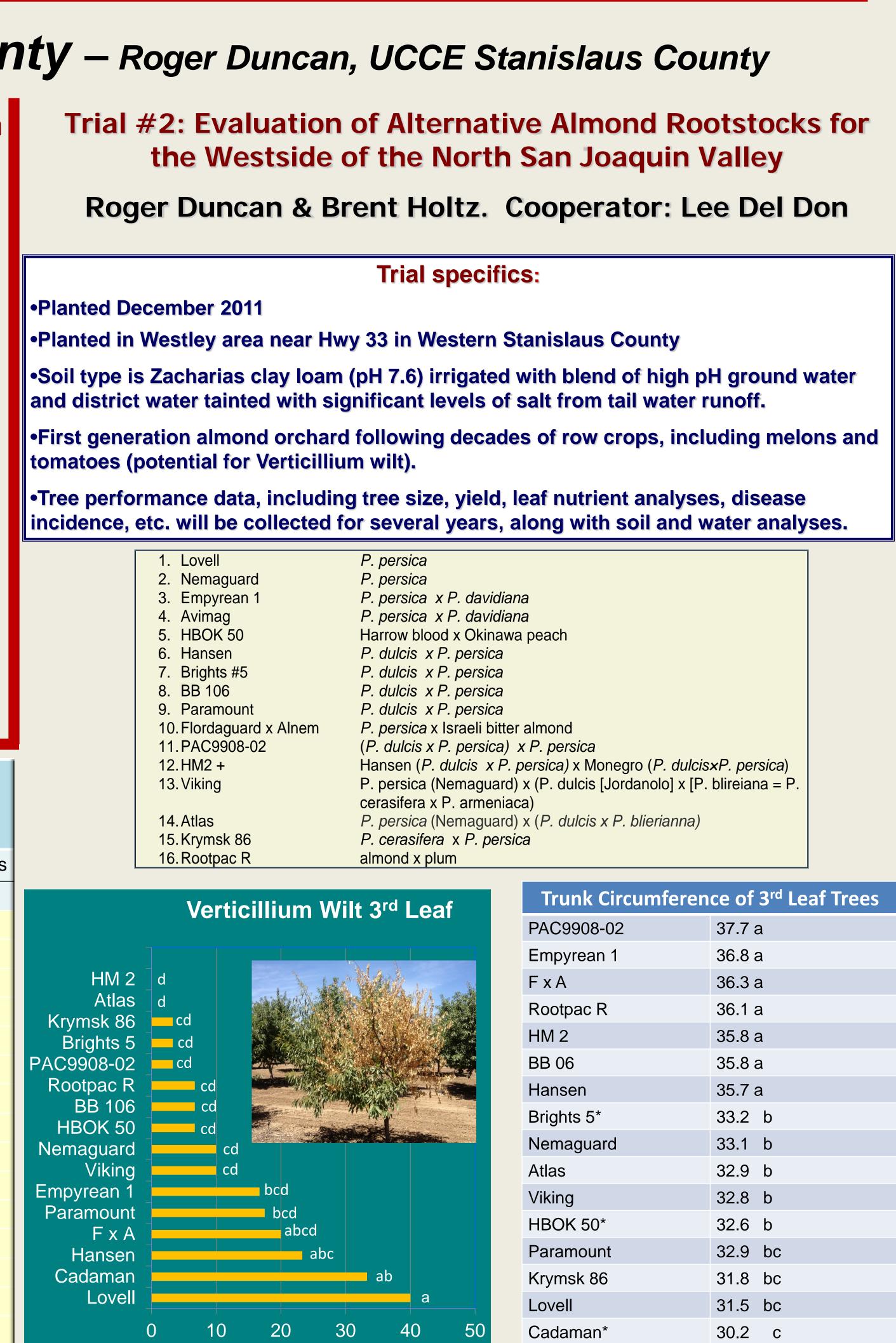
Smaller trees could be planted closer to increase yield, per acre but it is doubtful that the plum rootstocks would ever produce yields similar to peach x almond hybrids at any spacing in this soil.

P/A Hybrid rootstocks may perform better than Nemaguard in replant situations as long as ring nematode is not a problem.

List of Rootstocks in Trial		
Rootstock	Parentage	
Nemaguard	Peach (<i>Prunus persica x P. davidiana</i>)	
Lovell	Peach: chance seedling selected in 1882	
Guardian SC-17	Peach	
Avimag (a.k.a. Cadaman)	Peach	
Empyrean #1 (a.k.a. Barrier 1)	Peach	
Hansen 536	Peach x almond	
Nickels	Peach x almond	
Cornerstone	Peach x almond	
Paramount (a.k.a. GF 677)	Peach x almond	
Empyrean #2 (a.k.a. Penta)	Plum - P. Domestica (European plum)	
Empyrean 101 (a.k.a. Adesoto)	Plum - P. Insititia (damson plum)	
Julior	Plum - P. insititia x P. domestica	
Krymsk 86 (a.k.a. Kuban 86)	Peach x Myrobalan plum	
Atlas	Peach x almond x plum x apricot	
Viking	Peach x almond x plum x apricot	

Almond Rootstock Sensitivity to Toxic Salt lons. Keves, CA July, 2014

		ney	es, c	A July, Z	014			
1 and	Levels of Toxic Ions in July-Sampled Leaves							
	Nonpareil			Carmel				
	% Sodium		% Chloride		% Sodium		% Chloride	
Nemaguard	0.88 a		0.27	bc	bc 1.19 a		0.26 a	
Guardian	0.66	ab	0.21	cd	0.69	bcd	0.27	a
Lovell	0.58	bc	0.28	bc	0.75	bc	0.25	a
Atlas	0.57	bc	0.16	de	0.86	b	0.22	ab
Krymsk 86	0.55	bc	0.32	b				
Cadaman	0.31	cd	0.23	С	0.47	cde	0.24	ab
Penta	0.24	d	0.50	а				
Viking	0.21	d	0.12	ef	0.43	de	0.18	bc
Nickels	0.18	d	0.12	ef	0.35	ef	0.15	cd
Paramount	0.11	d	0.08	f	0.07	f	0.07	е
Empyrean 1	0.11	d	0.07	f				
Hansen	0.11	d	0.09	ef	0.10	f	0.10	de
Empyrean 101	0.10	d	0.12	ef				
Cornerstone	0.06	d	0.07	f				
Julior					0.37	ef	0.11	de
Critical Level	0.25		0.3		0.25		0.3	


Relative (Chlo	rophyll	Cont	ent *	
	No	onpareil	С	armel	
Hansen	38.4 a		39.8 a		
Nickels	37.3 ab		39.5 ab		
Penta	37.2	abc			
Cornerstone	36.8	bcd			
Empyrean 101	36.6	bcd			
Paramount	36.6	bcd	39.7 a	l	
Empyrean 1	36.4	bcd			
Atlas	36.1	bcd	36.1	С	
Cadaman	35.8	cd	38.3	b	
Viking	35.4	d	36.4	С	
Krymsk 86	34.0	е			
Guardian	33.2	е	35.3	cd	
Nemaguard	33.2	е	34.4	d	
Lovell	33.1	е	32.8	е	

*Chlorophyll readings taken with a Minolta SPAD 502 chlorophyll meter. Lower numbers indicate that the leaves were more yellow.

Almond Rootstock Sensitivity to Chloride. Westley, CA July, 2014

Levels of Chloride in July-Sampled Leaves

% Chloride
0.41 a
0.41 a
0.28 b
0.28 bc
0.27 bc
0.26 bc
0.24 bcd
0.22 bcde
0.19 bcdef
0.17 cdef
0.17 cdef
0.16 def
0.15 def
0.14 def
0.13 ef
D.10 f

% Incidence

*indicates these were potted trees and

3 rd	Leaf Trees
à	
a	
a	
a	
a	
a	
a	
b	
b	
b	
b	
b	
bc	
bc	
bc	
С	
start	ed out smaller