Almond Weed Management Research Brad Hanson¹, Marcelo Moretti¹, Seth Watkins¹, Lynn Sosnoskie¹, Franz Niederholzer², John Roncoroni², and David Doll² ¹Department of Plant Sciences, University of California, Davis; ²University of California Cooperative Extension

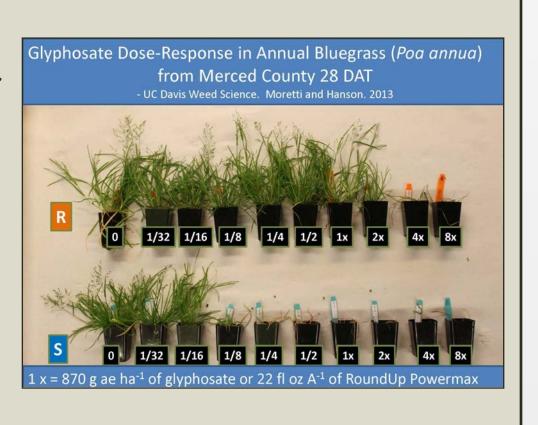
Objectives

The overall goals of the tree and vine weed science research and extension program at UC Davis (http://ucanr.org/brad.hanson) is to provide information on weed management and herbicide issues to California growers, Pest Control Advisors, and the UC Cooperative Extension network. The almond industry is one of the key stakeholder groups for this program; however, the majority of our research is broadly applicable to, and partially supported by, other orchard and vineyard commodities in the state as well as the pest control industry.

The specific objectives of this ongoing project (13Hort12.Hanson – Weed Management) mirror the major research areas in our program:

- Evaluation and testing of newly registered materials, tank mix partners, and application techniques for control of weeds with a special focus on glyphosate-resistant species.
- Evaluating herbicide injury symptoms in almonds and developing training tools for Farm Advisors and pest control industry advisors and consultants.

Numerous field and greenhouse experiments were conducted in 2013/2014 to support grower, Pest Control Advisor, and Farm Advisor weed and herbicide research needs. Because a more thorough presentation


of these projects is available in the annual reports to the Almond Board and in various online venues, this poster presents only a few representative results. Data from related projects are routinely presented at cooperative extension meetings as well as scientific presentations by members of the research team.

Identification and verification of herbicide-resistant weeds

Weed management in California tree and vine crops is currently dominated by problems with glyphosate-resistant and glyphosate-tolerant species. To date, six species resistant to glyphosate have been confirmed: hairy fleabane, horseweed (aka marestail), Italian and rigid ryegrass, and junglerice, and annual bluegrass. Several other species of concern have been identified and are under evaluation; these include three-spike goosegrass, Palmer amaranth and a suite of summer annual grasses. Research being conducted on herbicide-resistant weeds incudes confirmation of resistance (Figures 1), determining distribution of the resistant populations evaluation of alternative control measures, and determining the underlying physiological and genetic causes of resistance.

Glyphosate-resistant annual bluegrass Figure 1. Annual bluegrass (Poa annua) response to a range of glyphosate rates in the greenhouse. Both populations were collected from almond orchards in Merced County, the Resistant population (upper) has approximately a 16-fold *level of resistance compared to the Susceptible* population (lower).

Thus far, GR bluegrass does not seem to be widespread or a severe management problem but growers should consider it when developing orchard weed control programs that minimize resistance.

Other support

In addition to support from the Almond Board of California, the UC Davis Weed Science Program is supported by other commodity boards, federal and state grant programs, and funding from the agricultural chemical industry. A special thanks to all of our sponsors, collaborators, and grower cooperators.

GPR 刘

Hairy fleabane

GPR

Glyphosate resistance in horseweed and hairy fleabane

populations from California

0 0.02 0.07 0.2 0.6 2 6 18 54

Paraquat resistance in horseweed and hairy fleabane

populations from California

0 0.0006 0.002 0.006 0.02 0.05 0.16 0.5 1.5 4.5 13.5 40.5

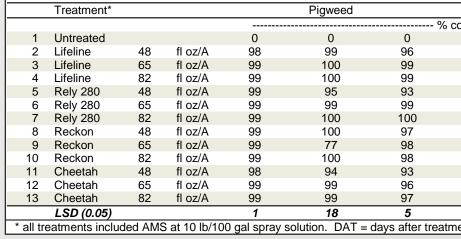
Kg ai ha⁻¹ of paraqua

Multiple-resistant Conzya

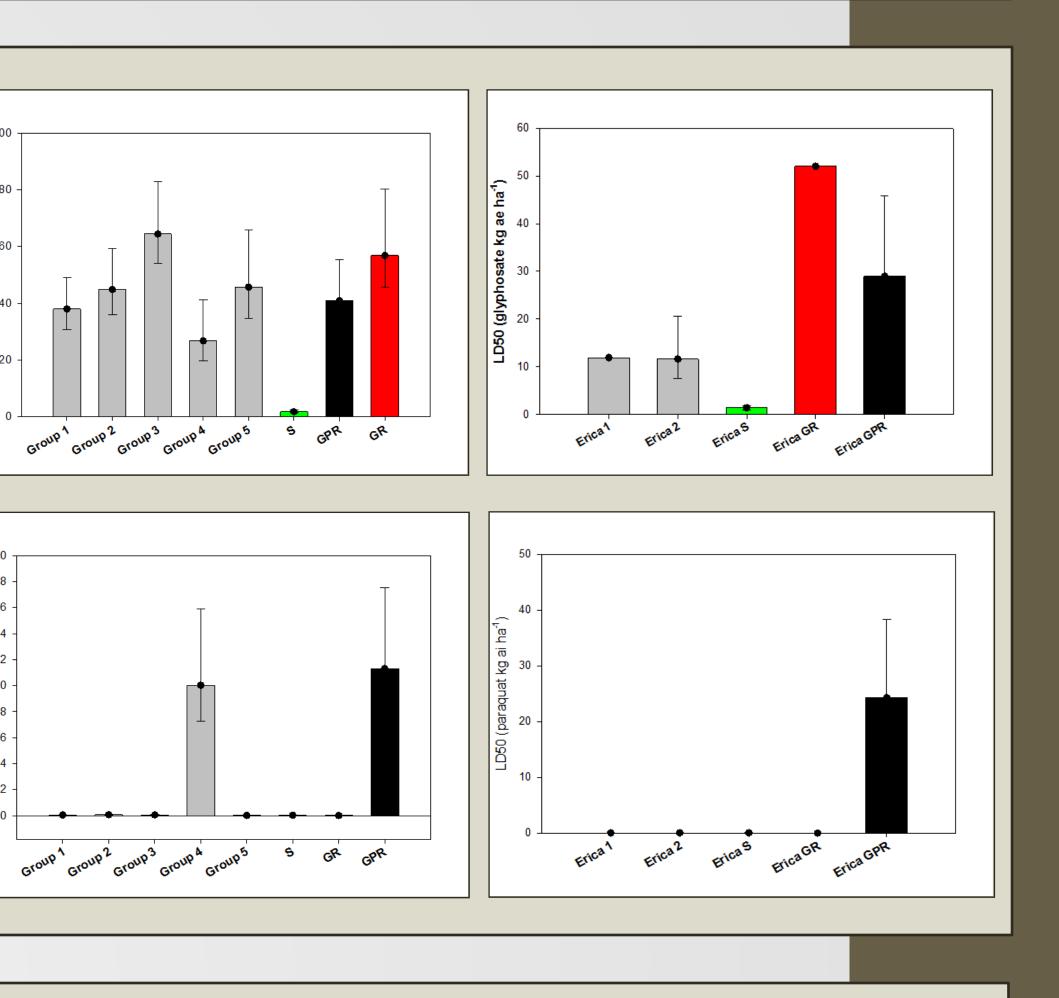
Figure 2a. Response of several horseweed (Conyza canadensis, top) and hairy fleabane (Conzya bonariensis - aka ERICA, bottom) to glyphosate. The "GPR" population is known to be resistant to both glyphosate and paraquat. LD50 values in the figures suggest different levels of resistance among Central Valley populations which may mean different mechanisms of resistance.

Figure 2b. Response of the same horseweed and hairy fleabane populations to paraquat. Results suggest little variability in resistance among populations which clearly separate into R or S groups.

Research is ongoing to develop a better understanding of the mechanism(s) of herbicide resistance in these common orchard weed species. Early results from studies using radio-labeled herbicides suggest that differential translocation may be a contributing factor to resistance in Conyza (data not shown); however, the underlying physiological mechanisms have yet to be elucidated.


Herbicide performance

Several field trials were conducted to evaluate weed control efficacy in commercial almond orchards. In these experiments, research personnel applied replicated, small-plot treatments using CO2 pressurized backpack or ATV-mounted spray equipment. Weed control was visually assessed several times during the growing season and, in some cases, biomass or other quantitative data were collected. A few representative data are shown in Tables 1-5 below; a full accounting is available in the Almond Board Research Report. Many of these data are also presented online at: the UC Weed Science blog (http://ucanr.edu/blogs/UCDWeedScience/index.cfm) and the Almond Doctor blog (<u>http://thealmonddoctor.com/</u>)


		noui	Looalon,		. (Watkins and Hans				AT-A			
					Annual bluegrass	Hairy fleabane	3 spike goose grass	Crab- grass	Annual	Hairy fleabane	Spotted spurge	Ove rall
	Treatment		Rate									
1	Untreated check							% C0	ontrol	_		-
2	Roundup PowerMax AMS Roundup PowerMax	1 2 1	lb ae/a qt/100 gal lb ae/a	A A B	98	98	23	0	80	80	33	77
3	AMS Roundup PowerMax AMS Goal 2XL	10 1 2 5	lb/100 gal lb ae/a qt/100 gal pt/a	B A A A	99	100	0	67	7	17	0	33
4	Surflan Roundup PowerMax AMS Pindar GT	4 1 2 3	qt/a lb ae/a qt/100 gal pt/a	A A A A	100	100	0	7	10	27	0	27
5	Roundup PowerMax AMS Prowl H20	1 2 4	lb ae/a qt/100 gal qt/a	A A A	100	100	0	67	7	13	33	23
6	Roundup PowerMax AMS Chateau	1 2 10	lb ae/a qt/100 gal oz/a	A A A	99	100	0	23	43	33	67	60
7	Roundup PowerMax AMS Prowl H20 Chateau	1 2 4 10	lb ae/a qt/100 gal qt/a oz/a	A A A A	98	100	0	87	13	13	0	52
8	Roundup PowerMax AMS Prowl H20 Matrix SG	1 2 4 4	lb ae/a qt/100 gal qt/a oz/a	A A A A	100	100	0	67	43	77	53	67
9	Roundup PowerMax AMS Alion	1 2 6.5	lb ae/a qt/100 gal oz/a	A A A	100	100	37	100	93	70	100	77
10		1 2 1.3	lb ae/a qt/100 gal lb/a	A A A	100	100	0	0	50	50	0	63
11	Roundup PowerMax AMS Prowl H20 Roundup PowerMax AMS Prowl H20	1 2 3 1 2 2	lb ae/a qt/100 gal qt/a lb ae/a qt/100 gal qt/a	A A B B B	100	100	0	100	100	80	93	80
12		1 2 3 1 2 2	lb ae/a qt/100 gal pt/a lb ae/a qt/100 gal qt/a	A A B B B	99	100	7	50	90	70	67	83
	LSD (0.05) timing was applied on D				12	8	15	59	26	49	59	25

spi	ring 2014. (Morett	i, vvain	ins, and		AT		28 DA	T	
				Annual	Hairy	Jungle-	Annual	Hairy	Total
						%	bluegrass		g/m sq
1	untreated control				0	0	0	0	137.1
2	Roundup Powermax AMS NIS	2	lb ae/a pt/a % v/v	100	30	65	100	67	23.8
3	Roundup Powermax AMS NIS	44 2	fl oz/a pt/a % v/v	98	73	90	100	93	4.3
4	Rely 280 AMS	48	fl oz/a pt/a	100	100	87	98	100	1.4
5	Rely 280 AMS	82	fl oz/a pt/a	100	100	91	98	87	0.7
6	Gramoxone SL NIS	1.25 0.25	pt/a % v/v	100	0	92	100	50	52.5
7	Gramoxone SL NIS		% v/v	100	0	92	100	78	7.9
8	Matrix AMS NIS	2	oz/a pt/a % v/v	60	50	86	98	72	42.0
9	Roundup Powermax Matrix AMS NIS	1 2 2	lb ae/a oz/a pt/a % v/v	100	88	98	67	93	0.1
10	Roundup Powermax Pindar GT AMS NIS	1 1.5 2	lb ae/a pt/a pt/a % v/v	100	53	100	100	86	64.9
11	Chateau NIS Roundup Powermax AMS	6 0.25 1	oz/a % v/v	100	75	100	100	66	0.1
12			pt/a	0	0	0	33	27	217.8
13	Poast COC Roundup Powermax AMS	1 1	pt/a % v/v lb ae/a pt/a	100	40	98	67	95	74.7
14	Roundup Powermax Matrix Ammonium Sulfate NIS	1 4 2 0.25	lb ae/a oz/a pt/a % v/v	100	75	100	100	92	0.1
15	Roundup Powermax AMS NIS Goal 2XL	1 2 0.25 0.125	lb ae/a pt/a % v/v lb ai/a	100	34	97	100	98	12.6
LSI	D (P=.05)			1	44	26	41	50	115.3

Table 4. Treatments and weed visual control ratings for a 2014 l fallow field near Davis, CA to compare new glufosinate formulat orchards and vineyards. (Moretti, Watkins, and Hanson) 7 DAT 15 DAT 21 DAT

	ducted in a or California
15 DAT	21 DAT
strate knotw	veed
0	0
63	20
73	30
87	48
60	25
86	33
89	50
84	20
81	30
96	48
48	18
80	20
86	30
23	15
	0 63 73 87 60 86 89 84 81 96 48 80 86

Selected weed control evaluations from 2013-14 comparison of Alion and other preemergence tankmix and sequential partners in an almond orchard near Escalon, CA. All reatments included a high rate of Rely 280 and Roundup Powermax to ensure good control of

exi	isting weeds. (V	Vatk	ins and l	Hans	son)					Ũ		
					3 spike	Crab-	Sow-	Hairy	Spotted	Overall	Overall	Overall
					goose-	grass	thistle	fleabane	spurge			
					grass							
								DAT-A			164 DAT	196 DAT
	Treatment		Rate					% C				
1	Untreated Check				0	0	0	0	0	0	0	10
2	Alion		oz/a	А	45	100	100	88	100	80	70	55
3	Alion		oz/a	А	45	100	93	100	100	86	78	68
4	Alion	5	oz/a	А	70	100	100	98	100	92	85	83
5	Chateau	10	oz wt/a	А	38	38	55	93	50	73	43	33
6	Matrix	4	oz wt/a	А	38	50	43	98	0	73	50	28
7	Pindar GT	2.5	pt/a	А	18	25	15	78	0	65	8	13
8	Goaltender	4	pt/a	А	18	45	5	45	0	55	18	18
9	Alion	5	oz/a	А	58	100	95	93	100	85	86	73
	Chateau	6	oz wt/a									
10	Alion	5	oz/a	А	59	100	100	100	100	91	89	73
	Matrix	2	oz wt/a									
11	Alion	5	oz/a	А	55	100	100	100	100	89	86	80
	Pindar GT	1.5	pt/a									
12	Alion	5	oz/a	А	90	100	98	98	100	94	91	84
	Goaltender	2	pt/a									
13	Chateau	10	oz wt/a	А	60	100	100	98	100	94	93	84
	Alion	3.5	oz/a	В								
14	Chateau	12	oz wt/a	А	75	98	100	100	100	98	94	91
	Alion	5	oz/a	В								ļ
15	Matrix	4	oz wt/a	А	63	100	100	100	100	97	94	84
	Alion	5	oz/a	В								
16	Alion	5	oz/a	А	75	100	100	100	100	98	96	91
	Alion	5	oz/a	В								ļ
17	Alion	3.5	oz/a	В	50	100	100	78	100	92	71	60
18	Alion	5	oz/a	В	65	100	98	83	100	95	79	74
	D (P=.05)				32	34	20	22	14	11	17	18
	• 'A' timing was applie	ed Dec	cember 17.	2013	and the 'B'	timina on			reatments a	at both timi	nas include	-
	Powermax plus Rely 280 and AMS for control of emerged weeds.											

Table 5. Selected weed control evaluations from 2013-14 comparison of Alion and other preemergence tankmix partners in an almond orchard near Wasco, CA. All trea high rate of Rely 280 and Roundup Powermax to ensure good control of existing weeds (Watkins, Moretti, and Hanson)

airy Overall
bane
0 0
7 97
2 92
9 76
77 77
0 40
6 92
8 97
7 97
00 100
6 96
8 97
34 25
)

Freatments applied on January 16, 2014. All treatments included Roundup Powermax at 2 qt/A, Rely 280 at 2 qt/A, and AMS at 2 qt/100 gal spray solution