Introduction

The sequencing and annotation of the navel orangeworm (Amyelois transitella:NOW) genome is well underway. The NOW genome project will allow for innovation in management of this pest. Discovering the genetic basis of pesticide tolerance and host-plant preference aids development of more effective control strategies. Because variation in genes coding for detoxification enzymes can increase pesticide tolerance and host-plant range, these genes can be identified as potential control targets. We focused on discovering the range of detoxification enzymes in the NOW genome, particularly the cytochrome P450 enzymes, which are known to increase pesticide and phytochemical tolerance.

Results to Date

The NOW genome size is estimated to be 400 Mb, with low polymorphism. The current assembly coverage depth is 36X. Manual gene annotation is underway, with focus on detoxification genes. Midgut RNA sequencing shows several 1:1 orthologs to Bombyx mori P450 genes transcribed in this tissue. Of these, several NOW-specific blooms are visible, particularly in the CYP6 family.

Developments in the Navel Orangeworm Genome Katherine Noble, May Berenbaum, Kim Walden and Hugh Robertson Department of Entomology, University of Illinois at Urbana Champaign

01	_	
001		
201	CVD6AB	
091.0.1	CIFOAB	
6AN2 Bm 00571.0.1		
6AV1 Bm		
01 8891501		
01		
01		
Bm		
5 Bm	СУРбаЕ	
6AE4 Bm	CHURL	
V2 Bm		
- 013597 0 1		
1 Bm		
337A2 Bm - 365A1 Bm		
Bm		
	СҮР9А	
Bm		
5 0 1		
Bm 101		
	341C1 Bm	
1		
- 020899 0 3 0899 0 5	CVD241	
054 0 1 - 4AU2 Bm	011341	
- 037803 0 1 - 066170 0 1		
340A2 Bm		
340A1	Bm	
	CVP340	
- 340F1 Bm 1 Bm	011540	
340C1	3m 185081 0 1	
- 340B1 Bm	- 366A1 Bm	
100913 1	1 3741 Bm	
19 Bm		
CND (
CIP4		
	15C1 Bm 164025 0 2	
	305B1 Bm	
09755501	243215 0 1	
	077495 0 1	CYP18
	- 18B1 Bm	
01 Pm	00704 307A1 Bm	601
3B2 Bm 475.0.1		
004563	2 1	CYP333
027	536 0 1 333A2 Bm	
m		
084028	0 1	
314A	1 Bm	
302A1 Bm	3154 Bm	
	037847 0 3 33941	Bm
	00301	

The NOW genome shows remarkably reduced polymorphism, which should greatly aid genome assembly. The estimated 400 Mb genome size is comparable to other lepidopteran genome sizes. Putative P450 genes transcribed in the midgut are orthologous to others implicated in pesticide, furanocoumarin, and aflatoxin detoxification. These detoxification genes are logical targets for further study, as their nucleotide variation may affect pesticide effectiveness.

An adult female NOW from a laboratory colony (J. Siegel:USDA) was submitted for high-throughput ILLUMINA sequencing. Resulting reads were assembled using the program SOAPdenovo. Construction of a 10kb mate-pair library will allow for longer- range scaffolding and assembly improvement. Annotation of detoxification and chemosensory genes is being carried out manually. This is complemented by a midgut RNA transcription dataset from ILLUMINA RNAseq. Reads were assembled de novo using Trinity and were compared against a database of annotated lepidopteran P450 genes for sequence similarity.

Feyereisen, R., 2011. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim. Biophys. Acta 1814: 19-28.?

Acknowledgments

We thank the Almond Board of California for research funding, Joel Siegel of USDA-ARS for specimens and guidance.

Discussion

Methods

References