

Nitrogen Transformations, ¹⁵N Assimilation and Recovery for California Almond

Daniel L. Schellenberg ^a, Saiful Muhammad ^b, Maria M. Alsina ^b, Christine M Stockert ^a, Tao Cheng ^c, Michael Whiting ^c, Blake L. Sanden ^d, Patrick H. Brown ^b and David R. Smart ^a ^a Department of Viticulture and Enology ^b Department of Plant Sciences ^c Department of Land Air and Water Resources ^d Kern County Cooperative Extension University of California Davis

Interpretive Summary

Nitrogen (N) is the primary nutrient for plant health. Since N fertilizer sources and delivery methods are numerous, we identified two primary forms for analysis of tree N uptake, soil N immobilization and N cycling rates at the tree scale. Both ammonium (NH_4^+) and nitrate (NO_3^-) fertilizer sources are subject to competition between microbial organisms and plant roots when applied to soil. Ammonium is subject to transformation into nitrate by nitrification and nitrate may be lost as gaseous by-products such as nitrous oxide (N_2O) during microbial nitrification and denitrification, and subject to leaching. In order to follow the amount of N fertilizer absorbed by the almond crop compared with native soil N and estimate nitrogen use efficiency (NUE), we used ¹⁵N tracers to:

More Results

¹⁵N assimilation and N₂O emissions

Soil immobilized more N on Day 1 after fertilization than Day 2, and up to an order of magnitude more N than tree roots absorbed. Tree roots were an important sink for NO_3^- . Evidence suggested that tree roots took up more NO_3^- than NH_4^+ on Day 1, but more NH_4^+ than NO_3^- overall (Figure 2). Peak ${}^{15}N_2O$ emissions were observed during the first 24 h (Day 1) and were greater from ${}^{15}NH_4NO_3$ compared to $NH_4^{15}NO_3$ (Figure 2). These results are consistent with results at the field scale that showed significantly greater N_2O emissions from a predominantly NH_4^+ -based fertilizer of urea ammonium nitrate (UAN) compared to a majority NO_3^- -based fertilizer in calcium ammonium nitrate (CAN) (Schellenberg et al. 2012).

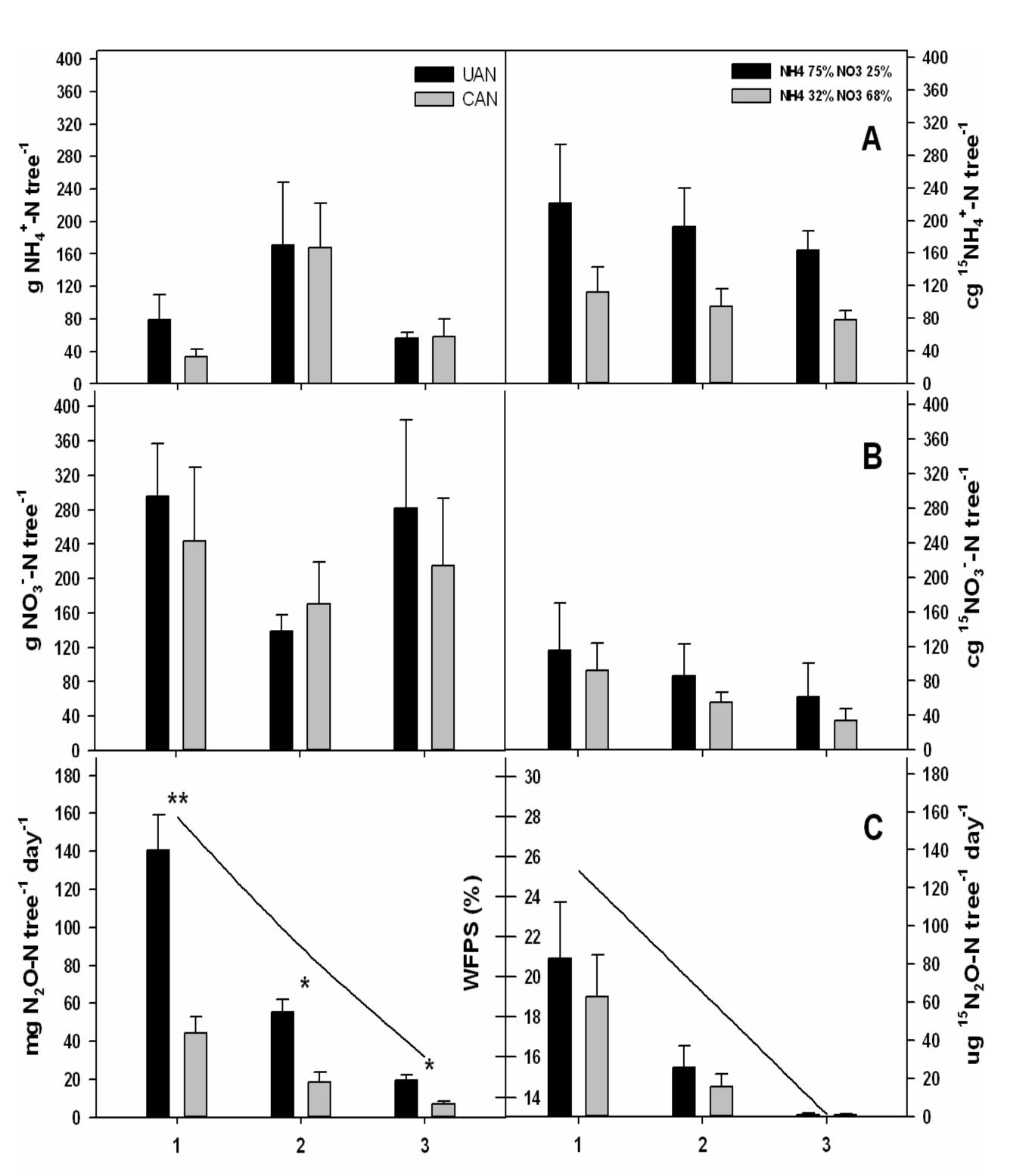
Quantify native N mineralized and available for uptake.
Quantify soil immobilization versus tree root uptake of fertilizer.
Estimate N₂O emissions from nitrification and denitrification.
Trace ¹⁵N tracer into the almond tree organs to estimate NUE.

Our results indicated that NUE in the orchard studied was from 68 to 85%, and verifies our N balance approach showing high NUE.

Materials and Methods

Almond trees were identified for targeted ¹⁵N enrichment during the summer of 2010 on a Milham sandy loam near Lost Hills, CA. Treatments of ${}^{15}NH_4NO_3$ and $NH_4{}^{15}NO_3$ (10% ${}^{15}N$ a.e.) were pulseinjected through the static sprinkler micro-irrigation system. Soil and gas sampling were conducted at 0, 1 and 2 days after fertilization (DAF) after ¹⁵N injection for estimation of gross nitrogen transformations, including dis-assimilatory NO_3^- reduction to ammonium DNRA), soil and root ^{15}N assimilation and $^{15}N_2O$ emissions. In 2010, 2011 and 2012 almond kernels, hulls and shells were collected and scaled along with tree yield to estimate ¹⁵N crop recovery (nitrogen use efficiency, NUE). In 2012, wood cores were taken from tree roots, branches, trunk and scaffolds to estimate ¹⁵N in the standing tree biomass. Leaves were also collected for ¹⁵N analysis and a remote sensing approach was used to determine tree leaf biomass. All of the isotopic analyses were conducted by the UC Davis Stable Isotope Facility.

Figure 1. Nitrogen (N) transformations include mineralization of soil organic N, nitrification of ammonium (NH_4^+) into nitrate (NO_3^-). Assimilation includes abiotic (eg. cation and anion exchange capacity) and biotic processes such as microbial assimilation and tree root uptake. The major pathways for N loss are leaching, and denitrification where trace amounts of N may be lost as the greenhouse gas nitrous oxide (N_2O). Aboveground N is found in the standing tree biomass and exported in the kernel, hull and shells of the almond crop. Leaves return to the soil and along with water and fertilizer constitute the primary inputs of N to the soil nitrogen pool.


(g ¹⁵ N tree ⁻¹)	¹⁵ NH ₄ 75% - ¹⁵ NO ₃ 25%	¹⁵ NH ₄ 32% - ¹⁵ NO ₃ 68%	
Applied ¹⁵ N	5.64	5.40	
2010 Crop			
Kernel	0.48 ± 0.07	0.28 ± 0.03	
Hull/Shell	0.26 ± 0.09	0.14 ± 0.04	
<u>2011 Crop</u>			
Kernel	1.14 ± 0.18	0.57 ± 0.09	
Hull/Shell	0.92 ± 0.15	0.44 ± 0.07	
2012 Crop			
Kernel	0.21 ± 0.01	0.10 ± 0.00	
Hull/Shell	0.08 ± 0.00	0.04 ± 0.00	
2012 Tree			
Leaves	0.03 ± 0.00	0.02 ± 0.00	
Roots	0.38 ± 0.02	0.19 ± 0.01	
Branches	0.49 ± 0.03	0.26 ± 0.02	
Scaffold	0.03 ± 0.00	0.02 ± 0.00	
Trunk	0.03 ± 0.00	0.02 ± 0.00	
3-yr Total	4.31 ± 0.50	2.19 ± 0.25	
Recovery (%)	68 - 85%	34 - 43%	
'Loss' (%)	32 - 15%	66 - 57%	

Results

Nitrogen transformations

Within 24 h after fertilization (Table 1, Day 1), gross mineralization was lower and NH_4^+ and NO_3^- assimilation by soils and roots (consumption) were greater than during Day 2. In addition, we observed over both days after fertilization that tree uptake and soil assimilation (NH_4^+ and NO_3^- consumption) of N exceeded mineralization. These results support the hypothesis that Nfertilization can stimulate both oxidation as well as consumption of N within 24 h and that the system shifts progressively toward greater soil N supply from mineralization as quickly as during the first 48 hours following fertilization (Table 1).

> Day 1 Day 2 a N tree⁻¹ day⁻¹

Table 2. ¹⁵N recovery for almond fruits split into hull + shell and kernel, tree organs from predominantly ammonium (${}^{15}NH_4$ 75% - ${}^{15}NO_3$ 25%) and majority nitrate (${}^{15}NH_4$ 32% - ${}^{15}NO_3$ 68%) treatments.

Crop and tree recovery

Enrichment of ¹⁵N in the almond crop was found in years 2010, 2011 and 2012 and continues to be present in the standing tree biomass (Table 2). We hypothesize that residual ¹⁵N will preside in the soil after 2012 and will continue to be available for uptake and/or potential loss via leaching and/or denitrification. As a result, final estimates for a total N balance remain inconclusive. The most important finding is crop and tree recovery of ¹⁵N was substantially greater for ¹⁵NH₄ compared to ¹⁵NO₃.

Conclusion

Tradeoffs exist between N recovery by trees and N loss by reactive N mobilization and N_2O emissions (in this case). Both these fates of N were greater for NH_4^+ (¹⁵ NH_4^+) which suggests the positively charged NH_4^+ ion is held in the upper soil horizons and is both more available for uptake by the tree over time but also subsequently susceptible to loss as the greenhouse gas N_2O . Lower N_2O emissions from ¹⁵N enriched NO_3^- fertilizer combined with lower overall recovery of ¹⁵N suggest a combination of N losses via leaching or N retention from conversion of inorganic fertilizer to dissolved organic nitrogen. These results support continued efforts of almond growers to adjust timing, placement, rate and <u>source</u> of N in order to improve nitrogen use efficiency (getting more N into the tree) and mitigate N loss.

	g N tree ⁻¹ day ⁻¹			
	Mean	SE	Mean	SE
N-mineralization	6.37	0.35	12.7	0.97
NH ₄ consumption	65.1	6.45	28.5	0.47
N-nitrification	24.6	3.90	11.6	2.12
NO ₃ consumption	37.2	5.45	18.5	4.95
	Day 1		Day 2	
		mg ¹⁵ N a.e. tree ⁻¹ day ⁻¹		
	Mean	SE	Mean	SE
Soil ¹⁵ NH ₄ ¹⁴ NO ₃	517	271	223	103
Soil ¹⁴ NH ₄ ¹⁵ NO ₃	67.1	14.5	36.6	3.28
Roots ¹⁵ NH ₄ ¹⁴ NO ₃	13.9	N/A	43.4	24.6
Roots ¹⁴ NH ₄ ¹⁵ NO ₃	3.01	2.12	4.73	2.18

Table 1. Nitrogen transformation rates and soil/root assimilation of ¹⁵N

Days after Fertilization

Figure 2. Soil ammonium (NH₄⁺; A) and (NO₃⁻; B) concentrations, nitrous oxide (N₂O; C) emissions and water-filled pore space (WFPS) from almond trees fertilized with UAN and CAN (left panel) and ¹⁵N (right panel) for one, two and three days after fertilization (DAF).

Acknowledgements

We express gratitude to many undergraduate research assistants including Jennifer M Jenkins, Cassy Buckingham, David Tran, Lauren N Lawless, Peggie Wong and Carolina A Almanza for many hours in the lab processing samples.

We are grateful to our funders, the USDA - Specialty Crops Research Initiative and the Almond Board of California for their support of this research.

Reference

Schellenberg DL, MM Alsina, S Muhammad, CM Stockert, MW Wolff, BL Sanden, PH Brown and DR Smart. Yield-scaled global warming potential from N₂O Emissions and CH₄ Oxidation for almond (Prunus dulcis) irrigated with nitrogen fertilizers on arid land. *Agriculture, Ecosystems and Environment Submitted for Publication in 2012*