Development of Leaf Sampling Methods and Nutrientbudget fertilization Sebastian Saa, Saiful Muhammad, Patrick Brown UC Davis, Department of Plant Sciences, One Shields Ave, Davis, CA 95616; phbrown@ucdavis.edu

Observational trial

- Four Representative CA almond orchards.
- Three different leaf samples (NF/F1/F2)
- Modeling prediction and spatial analysis.
- Individual tree yield.

Fertigation trial (Kern County)

- Two N and three K sources .
- Four N and three K rates.
- **Two irrigation Systems: Fan Jet and Drip.**
- Leaf and nut samples collected five times during the season.

Model 1

Develop a prediction model.

Figure 1. Nutrient behavior throughout 2008, 2009, and 2010 season in leaves from non-fruiting spurs (NF), spurs with 1 fruit (F1), and spurs with 2 fruits (F2). The graphs show data collected from the Arbuckle orchard.

Can we sample in April and Predict July?

Approach: Multi site, multi year, multi tissue and multi element analysis.

36 —							
3.4 - 4 3.2 -	— NF	Site	Year	July Nitrogen Predicted	July Nitrogen Observed	Predicted Percentage of Trees below 2.2 % at July	Obs Percenta below 2.
$\stackrel{\circ}{=}$	E2	Arbuckle	8	2.4	2.3	15%	2
5 ^{3.0}]		Belridge	8	2.4	2.4	3%	C
it 2.8 -		Madera	8	2.5	2.4	4%	1
te 2.6 -		Modesto	8	2.4	2.4	9%	1
		Arbuckle	9	2.4	2.6	10%	(

Model 2

Develop prediction model.

Model Output

Sampling Output

Figure 4. Cluster grid design to calculate the correct

90% Confide 18

Preliminary Conclusions

- Two models to predict July nitrogen content and the percentage of trees below the July critical value have been generated.
- The first model is potentially more robust, uses fruiting spur information and has less assumptions than model 2.
- The second model has more assumptions than model 1, must use non fruiting spurs to predict non fruiting spurs, and is potentially more precise than model 1.
- Model 2 suggest that a nitrogen content above **3.3 % in April will result in >95% of all trees being** above 2.2% in July.

Nitrogen (%) in April

Figure 3. Expected % of trees below 2.2% in July

sampling protocol.

	2.1	N UAN 32				N CAN 17				
6	Irrigation	125	200	275	350	125	200	275	350	
		2,865	3,453	3,765	4,064	2,622	3,313	3,960	3,728	
	Drip	С	b	ab	a	С	bc	ab	a	
				112				4		
		2,584	3,109	3,481	3,583	2,730	3,046	3,810	3,530	
	Fan Jet	С	b	b	a	d	С	a	b	
			1 m m							

	0		N UA	N 32		N CAN 17				
ľ	Irrigation	125	200	275	350	125	200	275	350	
		3,732	4,229	4,696	4,775	3,564	4,365	4 <mark>,833</mark>	4,969	
	Drip	С	b	a	a	С	b	a	a	
		3,744	4,048	4,480	4,406	3,746	4,161	4,420	4,361	
	Ean lat		h				h			

These models will be further validated with information collected in 2012.

Preliminary Conclusions

1000lb kernel removes from 55 (at a leaf N of 2.0 in July)-70lb N (at a leaf N of 2.4 in July), 8lb P and 80lb K.

80% of N, 75% of P and K accumulates in the fruit before 120 DAFB (mid June in 2010).

K concentration in leaves is highly variable and hence leaf sampling is difficult to interpret.

- In this trial a N rate of 275lb/ac maximized yield (4,700 lb acre) and there was no benefit from N application in excess of this value.
- A Nutrient Use Efficiency (N removed in harvest/N applied) of 75% was observed for N rate 275lb/ac rate.
- **Although significant differences in leaf K status** were observed; no statistically significant differences in yield have been observed (table 2 and 3)

United States National Institute Research of Food and Department of Agriculture Agriculture

Table 2. Mean Leaf Potassium content (%) in July 2010 for K rate.

Mean Leaf Potassium in July 2010 (%)							
	K Rate (lb/ac)						
Irrigation	100	200	300				
	1.9	2.0	2.2				
Drip	b	ab	а				
	1.43	1.81	2.23				
Fan Jet	b	а					

Means in same irrigation type not followed by the same letter are significantly different at 10%. Statistics are only within irrigation type and not between irrigation types.

Table 3. Mean kernel yield 2010 and 2011 from Potassium rate and Source treatment (lb/ac).

	K Rate (lb/ac)			K Source @200lb/ac			
Irrigation	100	200	300	SOP+KTS	SOP	KCL	
	3,829	3,765	3,844	3,659	3,649	3,583	
Drip							
and the second s	3, 501	3,481	3,475	3,496	3,431	3,080	
Fan Jet	- A BAR		100 March 100 Ma	a	а	b	

Mean Kernel Yield 2010 (lb/ac)

Mean Kernel Yield 2011 (lb/ac)

	K Rate			K Source @200lb/ac				
Irrigation	100	200	300	SOP+KTS	SOP	KCL		
	4,733	4,696	4,807	<mark>4,78</mark> 3	4,839	4,874		
Drip								
- Start	<mark>4,379</mark>	4,480	4,525	4,498	4,345	4,407		
Fan Jet								

Means in same irrigation type not followed by the same letter are significantly different at 10%. Statistics are only within irrigation type and not between irrigation types. K rate treatments were applied as 60% SOP and 40% KTS