

Project Goals:

- Reduce aflatoxin contamination
- Aspergillus flavus and A. parasiticus
- Monitor and control navel orangeworm Lepidoptera: Pyralidae
 - Amyelois transitella
- Larvae are vector for aspergilli
- California host plants
- Almonds, Pistachios, Walnuts, Figs
- Host plant volatiles as semiochemicals?

....

....

Navel Orangeworm:

"Control of NOW has been stated as one of the top priorities for the almond industry..."

- California Almonds
- 80% World
- 100% U.S.
- Approaching \$2 billion
- \$23-47 million due to aflatoxin

Eluded effective control

....

....

part my sake /

Navel Orangeworm:

Current Monitoring & Control

- Monitoring
 - Traps baited with
 - · Virgin female A. transitella
 - Almond meal, standard
- Control

part nyadasir

profit measure

plant mysarasin

- Mating disruption treatments
- ♀ Sex pheromone aldehydic component
- Four-component blend progress

Kairomonal Considerations?

Premise:

port my color

portingasters

- A. transitella attracted to damaged almonds
- Analyze volatiles corresponding to damage
 - Collect and identify volatiles
 - Perform bioassays to determine activity - Electroantennography
 - Field trappings

Host Plant Volatiles:

- Volatile Collections
 - Ex situ (damaged and undamaged)
- In situ (damaged and undamaged)
- Ambient orchard emissions
- Fungal contaminated kernels
- EAG and field trapping studies
- Components and simple blends
- Two-year period ('09-'10)
- Blends developed
 - Blend A
 - Blend B
 - Blend C

....

Field Trapping Results:

- **Experimental Design**
- Delta traps
- Nalgene bottles (8 mL), 1.5 mm hole, cotton plugs
- 400 mg/2 mL blend components
- 2 x 1 week intervals
- May, June, July, August
- 2011 growing season N=10, zero captures across all
- removed - One-way ANOVA, Fisher LSD
- pairwise

Field Trapping Results:

Table 1 Mean captures per trap per week of male and female A. transitella moths in traps baited with almond-based blends, Kern County, CA, 2011

Trap			Moths Captured	
Interval	Treatment	A. transitella	Female	Male
May	Blend A	1.60 ± 0.60 a	0.60 ± 0.25	1.00 ± 0.63
1 st flight	Blend B	0.60 ± 0.40 a,b	0.40 ± 0.25	0.20 ± 0.20
	Blend C	1.40 ± 0.51 a	0.80 ± 0.20	0.60 ± 0.40
,	Meal	0.20 ± 0.20 b	0.20 ± 0.20	0
	Blank	0 b	0	0
		F=3.10, df:4,20; P=0.039	F=2.50, df:4,20; P=0.075	F=1.57, df:4,20; P=0.222
plant myanacin				7

Field Trapping Results:

Table 1 Mean captures per trap per week of male and female A. transitella moths in traps baited with almond-based blends, Kern County, CA, 2011

		Moths Captured	
Treatment	A. transitella	Female	Male
Blend A	1.14 ± 0.26 a	0.43 ± 0.20 a	0.71 ± 0.29
Blend B	0.57 ± 0.30 a,b	0.14 ± 0.14 a,b	0.43 ± 0.30
Blend C	$0.29 \pm 0.29 b$	0 b	0.29 ± 0.29
Meal	0 b	0 b	0
Blank	0 b	0 b	0
	F=4.80, df:4,30; P=0.004	F=2.83, df:4,30; P=0.042	F=1.82, df:4,30; P=0.150
	Blend A Blend B Blend C Meal	Blend A Blend B 0.57 ± 0.30 a,b Blend C 0.29 ± 0.29 b Meal 0 b Blank F=4.80, df:4,30;	Blend A 1.14 ± 0.26 a 0.43 ± 0.20 a Blend B 0.57 ± 0.30 a,b 0.14 ± 0.14 a,b Blend C 0.29 ± 0.29 b 0 b Meal 0.57 ± 0.30 b 0.57 ± 0.30 b 0.57 ± 0.30 b 0.57 ± 0.30 c 0.57 ± 0.30 b 0.57 ± 0.30 c $0.57 $

Field Trapping Results:

Table 1 Mean captures per trap per week of male and female A. transitella moths in traps baited with almond-based blends, Kern County, CA, 2011

Trap			Moths Captured	
Interval	Treatment	A. transitella	Female	Male
July	Blend A	2.00 ± 0.58 a	0.44 ± 0.24 b	1.56 ± 0.63 a
2 nd flight	Blend B	2.33 ± 0.91 a	0.67 ± 0.29 a,b	1.67 ± 0.76 a
	Blend C	2.11 ± 0.72 a	1.22 ± 0.47 a	0.89 ± 0.35 a,b
	Meal	0.22 ± 0.22 b	0.11 ± 0.11 b	0.11 ± 0.11 b
	Blank	0.11 ± 0.11 b	0.11 ± 0.11 b	0 b
		F=3.43, df:4,40; P=0.017	F=2.79, df:4,40; P=0.039	F=2.74, df:4,40; P=0.042

Field Trapping Results:

Table 1 Mean captures per trap per week of male and female A. transitella moths in traps baited with almond-based blends, Kern County, CA, 2011

Trap Interval	Treatment	A. transitella	Moths Captured Female	Male
August	Blend A	1.14 ± 0.40 a	0.71 ± 0.42	$0.43 \pm 0.20 \text{ a,b}$
3 rd flight	Blend B	0.14 ± 0.14 b	0	0.14 ± 0.14 b
	Blend C	1.00 ± 0.31 a	0.14 ± 0.14	0.86 ± 0.26 a
	Meal	0.14 ± 0.14 b	0.14 ± 0.14	0 b
	Blank	0 b	0	0 b
		F=4.88, df:4,30;	F=2.02, df:4,30;	F=5.13, df:4,30;
		P=0.004	P=0.118	P=0.003
••				

Field Trapping Results:

Table 1 Mean captures per trap per week of male and female A. transitella moths in traps baited with almond-based blends, Kern County, CA, 2011

Trap				
Interval	Treatment	A. transitella	Female	Male
Overall	Blend A	1.50 ± 0.24 a	0.54 ± 0.14 a	0.96 ± 0.25 a
	Blend B	1.04 ± 0.35 a	0.32 ± 0.12 a,b	0.71 ± 0.28 a
	Blend C	1.25 ± 0.29 a	0.57 ± 0.18 a	0.68 ± 0.16 a
	Meal	0.14 ± 0.09 b	0.11 ± 0.06 b	0.04 ± 0.04 b
	Blank	$0.04 \pm 0.04 b$	$0.04 \pm 0.04 b$	0 b
		F=8.11, df:4,135; <i>P</i> <0.001	F=4.16, df:4,135; P=0.003	F=5.60, df:4,135; P<0.001
				1

Field Trapping Results:

Total	Moths Captured				
	Treatment	A. transitella	Female	Male	
	Blend A	42	15	27	
	Blend B	29	9	20	
	Blend C	35	16	19	
	Meal	4	3	1	
	Blank	1	1	0	

....

Summary:

- Kairomonal-Based Blends:
 - More effective than current standard, Almond Meal - Blends A & C captured more female A. transitella
 - than Almond Meal Higher capture numbers and consistency of Blends A & C present an opportunity for a kairomonal-based
 - monitoring approach Commercial use needs more optimization
 - Highlights progress in an otherwise elusive insect pest

Acknowledgements:

- Trust Fund Cooperative Agreement # 58-5325-8-41
 - Almond Board of California
- Cooperative Research and Development Agreement # 58-3K95-7-1198
- Paramount Farming Company
- Johnny Magana
- USDA-ARS Project # 5325-42000-037-00D
- · James Baker

