Integrated Conventional and Genomic Approaches to Almond Rootstock Development

Project No.:	15-HORT16-Aradhya/Ledbetter		
Project Leaders:	Malli Aradhya National Clonal Germplasm Repository (NCGR), USDA-ARS UC Davis One Shields Avenue Davis, CA 95616 530.752.9392 malli.aradhya@ars.usda.gov		
	Craig A Ledbetter Crop Diseases, Pests, and Genetics, USDA-ARS 9611 S. Riverbend Avenue Parlier, CA, 93648 559.596.2817 craig.ledetter@ars.usda.gov		
Project Cooperators and	Personnel: Gregory Browne and Daniel Kluepfel, Crops Pathology and		

Gregory Browne and Daniel Kluepfel, Crops Pathology and Genetics, USDA-ARS, UC Davis Andreas Westphal, UC Riverside & Kearney Ag Center John Preece, NCGR, Davis, USDA-ARS Georgia Drakakaki and Tom Gradziel, Plant Services, UC Davis Dianne Velasco, Doctoral Candidate, Plant Sciences, UC Davis

Objectives:

- 1. Produce interspecific hybrids involving *Prunus* spp. that are potential donors of disease resistance to enlarge diversity among hybrids to improve selection response and genetic gains.
- 2. Disease testing of rootstocks to produce high quality disease phenotype data.
- 3. Intensify genotype-by-sequencing (GBS) based high density genotyping of rootstocks and perform association analysis to develop efficient marker assisted selection strategies.

Interpretive Summary:

Rootstocks with resistance/tolerance to soil borne pests and pathogens and drought are critical for realizing the genetic potential of scion cultivars and for sustainable production of almonds. The soil borne pathogens of almond: *Phytophthora* (PHY) rots; *Agrobacterium* induced crown gall (CG); lesion and rootknot nematodes (NEM) major limiting factors in orchard/nursery productivity and orchard longevity. While widely used fumigant in almond nurseries, methyl bromide is rapidly being phased out. Finding sustainable and environmentally sound alternatives to methyl bromide and other fumigants is a top priority for the Almond Board of California. Rootstocks with resistance to soil-borne pathogens will significantly reduce our dependence on soil fumigation for optimal productivity. Host plant resistance is the most durable and sustainable form of protection against soil borne pests and pathogens.

The ongoing long-term rootstock breeding project is focused on enlarging the taxonomic and genetic diversity of *Prunus* hybrids by involving potential donor species and genotypes in the hybrid production. We will continue to develop molecular and genomic tools to improve selection efficiency and rapid development of rootstocks. We will intensify disease evaluation and molecular characterization to decipher the genetic basis of disease resistance for development of effective marker/genomic assisted selection strategies. Development and deployment of genetic markers will facilitate selection of resistant rootstock genotypes at juvenile stages without pathogen challenge and grow out. These advantages cannot be overstated when considering selection of a commercially viable woody perennial tree rootstock.

Availability of diverse germplasm, high throughput marker systems for high density genotyping, efficient disease testing schemes are the key to the success of this project. Single Nucleotide Polymorphisms (SNPs) are the marker of choice for high density genotyping. This research during the past four years has focused on: (1) screening and identifying reliable sources of durable combined resistance to these soil borne diseases; (2) hybridizing potential donor species with peach and almond genotypes to produce novel rootstock genotypes; (3) SNP genotyping and disease testing; and (4) identifying markers associated with soil borne diseases to develop and validate effective marker assisted selection strategies.

Research highlights:

- 1. Identified marker(s) associated with an important soil borne crown gall (CG) disease.
- 2. Assembled a wide range of novel interspecific *Prunus* hybrids involving species that are potential donors of disease resistance and hitherto not produced.
- Identified a number of candidate rootstocks that show high levels of resistance/tolerance to CG: P2-4 ('Nemared' x *P. argentea*); P4-25 ('Nemared' x *P. fenzliana*); P4-10 ('Nemared' x *P. fezliana*); 197-113 (*P. persica* x *P. tangutica*); 197-199 (*P. persica* x *P. davidiana*); 197-217 (P. persica x P. kuramica), and PHY: P4-1 (*P. dulcis* x *P. kuramica*); P2-4 ('Nemared' x *P. aregentea*); L1-2 (*P. cerasifera* half-sib) in initial disease evaluation trials.

Materials and Methods:

Production and disease testing on novel rootstocks

In addition to 65 hybrids produced during the past four years (**Table 1**), during spring, 2015, we produced a number of diverse hybrids: myrobalan plum (*P. cerasifera*) x wild peach (*P. mira*), almond (*P. dulcis*) x Japanese plum (*P. salicina*), peach (*P. persica*) x Japanese plum (*P. salicina*), and peach (*P. persica*) x Nanking cherry (*P. tomentosa*) (**Figure 1**). These hybrids were embryo rescued and clonally propagated to produce plants for disease evaluation. We are planning to evaluate them for resistance to soil borne diseases beginning fall of 2016.

Develop and identify SNPs linked to genes mediating disease resistance

We will be building on the ongoing efforts of SNP discovery by following GBS approach. GBS is cost-effective for both SNP discovery and genotyping simultaneously (Elshire et al., 2011). GBS permits high density genotyping and flexibility for genetic and association mapping. The SNP genotype data in combination with disease screening data will permit us to analyze for the association of markers with disease resistance loci. Association analyses will be performed with a mixed-model integrating the marker-inferred population structure at an estimated number of subpopulations (Q-matrix) and the pair-wise co-ancestry.

Results and Discussion:

Novel rootstocks produced and disease evaluation

The first round of disease evaluation of novel rootstocks generated in this project has yielded encouraging results with wide variation in response to CG and *Phytophthora* screening. A number of candidate rootstocks that show high levels of resistance/tolerance to CG: P2-4 ('Nemared' x *P. argentea*); P4-25 ('Nemared' x *P. fenzliana*); P4-10 ('Nemared' x *P. fezliana*); 197-113 (*P. persica* x *P. tangutica*); 197-199 (*P. persica* x *P. davidiana*); 197-217 (*P. persica* x *P. kuramica*), and PHY: P4-1 (*P. dulcis* x *P. kuramica*); P2-4 ('Nemared' x *P. aregentea*); L1-2 (*P. ceracifera* half-sib) in initial disease evaluation trials will be grafted with scions and planted for evaluation of graft compatibility. We do not expect any serious graft compatibility issues among these as all the rootstocks were derived from peach-almond genetic background. A second round of CG testing with 44 hybrids is still ongoing and will be concluded in late fall, 2016. A *Phytophthora* field evaluation trial with same 44 hybrids is slated for planting in fall, 2016.

SNP discovery and genotyping of Prunus rootstocks

Previously, 190 rootstock genotypes consisting of commercial/UC/FPS/novel rootstocks produced within the project have been genotyped by following GBS method at the Institute for Genomic Diversity (IGD) at Cornell University. While disease evaluation data is being collected on the 65 new hybrids, we will be SNP genotyping them by GBS approach during current project cycle to perform association analysis.

Diseases screening and association analyses

For the previous association analysis, categorical disease screening data for CG was provided by Kluepfel lab (unpublished) at USDA-ARS. Quantitative disease evaluation data for PHY was obtained from Browne lab (unpublished), and root knot and root lesion nematode quantitative data were gleaned from online sources originating from the McKenry lab at Kearney Ag Center, Parlier.

The mixed linear model (MLM) results indicated several SNPs across the genome with significant association (p<0.05) with CG with R² values ranging from 0.09 to 0.11, which is considered significant for traits such as disease resistance with complex inheritance patterns with generally low heritability. It appears that the genetic or quantitative loci (QTLs) modulating CG resistance occurs in four different linkage groups. The marker with highly significant association is found located on chromosome 8 based on the peach reference genome used in this study for SNP discovery.

The analysis using the general linear model (GLM), however showed a significant association of a SNP with CG located on chromosome 1 at the end of an Exon for a putative iron oxidoreductase enzyme gene in *Arabidopsis thaliana*, which appears to be homologous to a transcript of a putative gene in *P. persica*. Some members of this gene family appear to have a role in pathogen defense/susceptibility (van Damme et al. 2008).

In continuation of the association analyses reported above, we will be assembling disease evaluation and SNP genotype data for the new set of hybrids produced in this project to perform association analysis. The marker discovery process will continue as and when the disease data for new hybrids become available.

Research Effort Recent Publications:

Velasco, D., Aradhya, M. K. and Ross-Ibarra, J. 2016. Evolutionary genomics of peach and almond domestication. (submitted to G3:Genes/Genomics/Genetics)

References Cited:

- Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. *PloS one*, *6*(5), e19379.
- van Damme M, Huibers RP, Elberse J, Van den Ackerveken G. 2008. Arabidopsis RMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. *The Plant Journal*. 54:785-793.

		Mother Tree	Mother tree	Pollen Parent	Pollen Parent
Year	Code	Accession	Species	Accession	Species
2010	DR10-P019.3	Pom WEO F5 3-5	P. dulcis	DPRU 0194	P. argentea
		Pom WEO F5 3-5	P. dulcis	Pomology	P. fenzliana
		Pom WEO F5 3-5	P. dulcis	DPRU 582	P. kansuensis
		Pom WEO F5 3-5	P. dulcis	DPRU 1467.x	P. kuramica
		Pom WEO F5 3-5	P. dulcis	DPRU 2327.x	P. tangutica
		Pom WEO PG 7-16	P. hybrid/P. persica	DPRU 194	P. argentea
		Pom WEO PG 7-16	P. hybrid/P. persica	DPRU 1871.1	P. bucharica
		Pom WEO PG 7-16	P. hybrid/P. persica	Pomology	P. fenzliana
	DR10-P014.1	Pom WEO PG 7-16	P. hybrid/P. persica	DPRU 582	P. kansuensis
		Pom WEO PG 7-16	P. hybrid/P. persica	DPRU 1467.x	P. kuramica
		Pom WEO PG 7-16	P. hybrid/P. persica	DPRU 2329.21	P. pedunculata
		Pom WEO PG 7-16	P. hybrid/P. persica	DPRU 2316.5	P. tomentosa
		Pom WEO PG 7-16	P. hybrid/P. persica	DPRU 196	P. webbii

Table 1. Prunus interspecific hybrids produced between 2010-2015

		DPRU 2160 A	P. persica	DPRU 582	P. kansuensis
		DPRU 2160 A	P. persica	DPRU 2329.21	P. pedunculata
		DPRU 2261 B	P. persica	DPRU 1871.1	P. bucharica
		DPRU 2261 B	P. persica	DPRU 581	P. davidiana
		DPRU 2261 B	P. persica	Pomology	P. fenzliana
		DPRU 2261 B	P. persica	DPRU 2327.x	P. tangutica
		DPRU 2261 B	P. persica	DPRU 2312.2	P. triloba
		DPRU 2261 B	P. persica	DPRU 196	P. webbii
		DPRU 2267 A	P. persica	DPRU 1060 & 1065	P. hybrid
	DR10-OT16.06	DPRU 2327.16	P. tangutica	Unknown	Open pollinated
	DR10-OT17.08	DPRU 2327.17	P. tangutica	Unknown	Open pollinated
2011	DR-11R	DPRU 0194	P. argentea	Unknown	Open pollinated
	DR-11CH	DPRU 1511	P. cerasifera	FPS	P. hybrid
	DR-11C1	DPRU 1511	P. cerasifera	OPS	
	DR-11DR	Pom WEO F5 3-5	P. dulcis	DPRU 194	P. argentea
	DR-11DK	Pom WEO F5 3-5	P. dulcis	DPRU 1467.x	P. kuramica
	DR-11DT	Pom WEO F5 3-5	P. dulcis	DPRU 2327.x	P. tangutica
	DR-11DV	Pom WEO F5 3-5	P. dulcis	DPRU 581	P. davidiana
	DR-11NC	Pom WEO PG 7-3	P. hybrid/P. persica	DPRU 1511	P. cerasifera
	DR-11NT	Pom WEO PG 7-3	P. hybrid/P. persica	DPRU 2327.x	P. tangutica
	DR-11NF	Pom WEO PG 7-3	P. hybrid/P. persica	Pomology	P. fenzliana
	DR-11NR	Pom WEO PG 7-3	P. hybrid/P. persica	DPRU 194	P. argentea
	DR-11W1	DPRU 0197 A/B	P. webbii	Unknown	Open pollinated
	DR-11W2	DPRU 0198	P. webbii	Unknown	Open pollinated
2012	DR-12PB	DPRU 1576. C	P. persica	Kearney	P. arabica
	DR-12PF	DPRU 1602. C	P. persica	Pomology	P. fenzliana
	DR-12PF	DPRU 2151. A	P. persica	Pomology	P. fenzliana
	DR-12PD1	DPRU 2151. B	P. persica	DPRU 2578.2 A	P. dulcis
	DR-12PH1	DPRU 2466.12 A	P. persica	DPRU 2915.15	P. hybrid
	DR-12PV	DPRU 2466.17 A	P. persica	DPRU 2493.X	P. davidiana
	DR-12PU2	DPRU 2499.1 A	P. persica	DPRU 0192.3	P. bucharica
	DR-12PK2	DPRU 2499.4 A	P. persica	DPRU 1467.9	P. kuramica
	DR-12PU1	DPRU 2499.5 A	P. persica	DPRU 1871.1	P. bucharica
	DR-12PH2	DPRU 2499.6 A	P. persica	FPS	plum hybrid
	DR-12PD2	DPRU 2544. A	P. persica	DPRU 2578.2 A	P. dulcis
	DR-12PR	DPRU 2546.3 A	P. persica	DPRU 0194	P. argentea
	DR-12PH4	DPRU 2629. B	P. persica	DPRU 1063	plumcot
	DR-12PN1	DPRU 2631. A	P. persica	DPRU 2316.12	P. tomentosa
	DR-12PS	DPRU 2631. B	P. persica	DPRU 582	P. kansuensis
	DR-12PH3	DPRU 2651.1 A	P. persica	DPRU 1063	plumcot

	DR-12PT	DPRU 2651.2 A	P. persica	DPRU 2327.x	P. tangutica
	DR-12PL	DPRU 2654.1 A	P. persica	DPRU 2464 A	P. salicina
	DR-12PK1	DPRU 2655.1 A	P. persica	DPRU 1467.9	P. kuramica
	DR-12PN2	DPRU 2656.2 A	P. persica	DPRU 2316.12	P. tomentosa
2015	DR15-CM1	DPRU 2982.4	P. cerasifera	DPRU 3112	P. mira
	DR15-CM2	DPRU 2982.4	P. cerasifera	DPRU 3112	P. mira
	DR15-CM3	DPRU 2982.4	P. cerasifera	DPRU 3112	P. mira
	DR15-CM4	DPRU 2982.4	P. cerasifera	DPRU 3112	P. mira
	DR15-CM5	DPRU 2982.4	P. cerasifera	DPRU 3112	P. mira
	DR15-CM6	DPRU 2982.4	P. cerasifera	DPRU 3112	P. mira
	DR15-CM7	DPRU 2982.4	P. cerasifera	DPRU 3112	P. mira
	DR15-CM8	DPRU 2982.4	P. cerasifera	DPRU 3112	P. mira
	DR15-DS1	DPRU 2962.22	P. dulcis	DPRU 424	P. salicina
	DR15-DS2	DPRU 2962.22	P. dulcis	DPRU 424	P. salicina
	DR15-DS3	DPRU 2962.22	P. dulcis	DPRU 2806	P. salicina
	DR15-DS4	DPRU 2962.22	P. dulcis	DPRU 2806	P. salicina
	DR15-DS5	DPRU 2962.22	P. dulcis	DPRU 2806	P. salicina
	DR15-DS6	DPRU 2960.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS7	DPRU 2960.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS8	DPRU 2960.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS9	DPRU 2960.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS10	DPRU 2960.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS11	DPRU 2960.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS12	DPRU 2960.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS13	DPRU 2960.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS14	DPRU 2959.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS15	DPRU 2959.8	P. dulcis	DPRU 2806	P. salicina
	DR15-DS24	DPRU 2959.8	P. dulcis	DPRU 2806	P. salicina
	DR15-PS1	DPRU 3159	P. persica	DPRU 424	P. salicina
	DR15-PS2	DPRU 3159	P. persica	DPRU 424	P. salicina
	DR15-PS3	DPRU 3159	P. persica	DPRU 424	P. salicina
	DR15-PS4	DPRU 3159	P. persica	DPRU 424	P. salicina
	DR15-PS5	DPRU 3159	P. persica	DPRU 424	P. salicina
	DR15-PS6	DPRU 3159	P. persica	DPRU 424	P. salicina
	DR15-PS7	DPRU 3159	P. persica	DPRU 424	P. salicina
	DR15-PT1	DPRU 3159	P persica	mixed pollen	P. tomentosa
	DR15-PT2	DPRU 3159	P persica	mixed pollen	P. tomentosa
	DR15-PT3	DPRU 3159	P persica	mixed pollen	P. tomentosa
	DR15-PSA1	DPRU 3190	P. persica	DPRU 424	P. salicina
	DR15-PSA2	DPRU 3190	P. persica	DPRU 424	P. salicina
	DR15-PSA3	DPRU 3190	P. persica	DPRU 424	P. salicina
	DR15-PSA4	DPRU 3190	P. persica	DPRU 424	P. salicina

DR15-PSA5	DPRU 3190	P. persica	DPRU 424	P. salicina
DR15-PSA6	DPRU 3190	P. persica	DPRU 424	P. salicina
DR15-PSA7	DPRU 3190	P. persica	DPRU 424	P. salicina
DR15-PSA8	DPRU 3190	P. persica	DPRU 424	P. salicina
DR15-PSA9	DPRU 3190	P. persica	DPRU 424	P. salicina
DR15-PSA10	DPRU 3190	P. persica	DPRU 424	P. salicina

Figure 1. Interspecific hybrids produced in the project.