Fertigation: Interaction of Water Management and Nutrient Management in Almonds

Project No.:	12-HORT11A-Sanden
Project Leader:	Blake Sanden UCCE - Kern County 1031 S. Mt. Vernon Ave Bakersfield, CA 93307 661.868.6218 blsanden@ucdavis.edu Patrick Brown and Ken Shackel, Plant Sciences, UC Davis
Project Cooperators an	Id Personnel: B. Lampinen, UC Davis R. Rosecrance, Chico State J. Edstrom and F. Niederholzer, UCCE – Colusa County R. Duncan, UCCE – Stanislaus County

R. Beede, UCCE - Kings/Tulare County

Paramount Farming Company

Objectives:

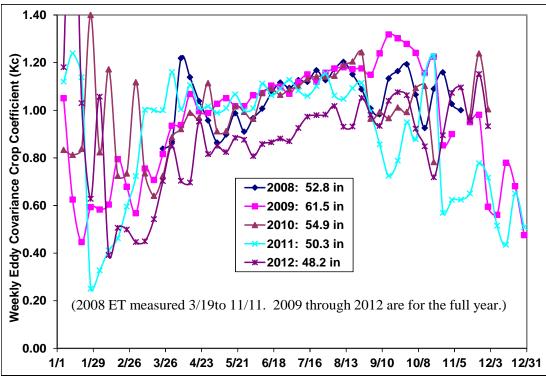
- Determine actual almond ET under truly non-stressed conditions using two independent methods.
- Determine if differential fertilizer regimens, micro irrigation system type (drip vs. microsprinkler), and yield result in differential rootzone soil moisture, tree stress (SWP) and tree ET.

Interpretive Summary:

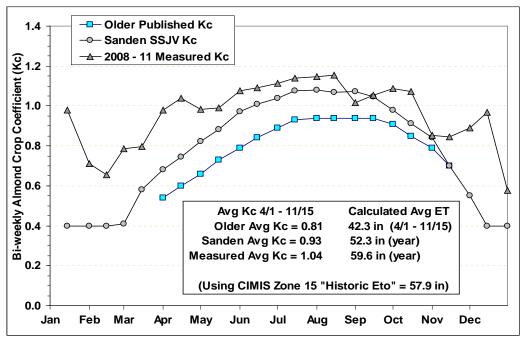
Based on data of measured orchard evapotranspiration (ET) over four full years, we have confirmed that previously published estimates of almond water use in the southern San Joaquin Valley were substantially below (about 40%) the maximum possible value. There was good agreement between ET estimated from meteorological and soil water balance methods. Almond ET can exceed 52 inches/year, but there is no evidence that an ET above 52 inches will result in higher yields and no evidence that ET increases with increasing levels of soil fertility. A relatively small but consistent reduction in the level of tree water stress, as measured using midday stem water potential (SWP) was associated with double line drip compared to microsprinkler irrigation, but further study will be required to determine if this was due to a higher irrigation efficiency (less soil evaporation with drip) or local variation in soils.

Materials and Methods:

A 9th leaf 150 acre almond orchard in NW Kern County with three 51 acre sets irrigated with microsprinklers (2 Fanjets @ 1.68 in/day) was selected for this trial starting February 2008. The eastern 2 sets are a uniform Milham Sandy Clay Loam. Past tissue tests showed uniformly low K levels, but fairly good yields (2,400+ lb/ac). The eastern set was retrofitted


with double-line drip applying 1.67 in/day irrigation. A total of 40 water monitoring sites (4 replications each treatment, 20 drip, 20 fanjet) have been established over 5 different fertility treatments.

FER	TILITY TR	REATMENTS	TO BE	MONITO	RED WEEKI	Y FEBRUARY - NOVEMBER:
	N (Ib/ac)	K (lb/ac)		N (Ib/ac)	K (lb/ac)	
1.	125	200	2.	200	200	
3.	275	200		(Grower	standard)	(UAN32, K from base 125 lb/ac banded K2S04, balance KTS)
4.	275	300	5.	350	200	
On INTE 4 a SOII 1 r SOII All PLA We MET	e 2 inch x each mic nual soil s SNSIVE So dditional a in all sec ite each fo WATER eplication inch dept rometer lo MONITO neutron p NT STRE eekly stem EOROLO sonic aner installed thermoco	9 foot deep rosprinkler a ampling to 9 OIL WATER access tubes tors of the we or microsprin TENSION M of each treat ths adjacent to oggers to be RING FREQ robe sites an SS MONITO water poten GIC HEAT F nometer, net above the ca ouples installe	Class 12 nd doub feet @ CONTE installe etted are kler and ONITO ment to to the N used to UENCY d flow n RING tial (pre- tial (pre- radiome nopy m ed at a 2	25 PVC tu le-line dri 1 foot from I foot from I foot from I foot from d at one of ea. d drip system RING be outfitte P access record re neters real ssure chat ONITORII eter, and li id-March. 2 inch dep	ube in middle p). m tube, Dece ITORING of the high fer ems. ed with Water tube. adings @ 3 h ad weekly Ma ad weekly Ma umber) May-C NG for ET (co high response In combination	


Results and Discussion:

Midseason (May – September) orchard ET, expressed as a Kc value to account for day-to-day differences in weather, consistently approached values of about 1.2 from 2008 to 2011, although it was substantially below this (about 1.0) in 2012 (**Figure 1**). Previous estimates for almond Kc showed a peak value of about 0.95 (**Figure 2**), so it is clear that the previous estimates for Kc, and hence almond ET, were substantial underestimates, particularly for the southern San Joaquin Valley. The large variations in measured Kc in the winter and spring (**Figure 1**) and large differences to the previous estimates at this time of year (**Figure 2**) have a relatively minor effect on annual orchard ET because overall evaporation rates at this time are low. It is important to note that the fundamental assumption of the Kc and ET approach to water management is that the 'true' Kc should only be established under non-water-limited conditions because plants generally reduce ET when soil water is limiting. Hence, our measured average Kc (1.04) and corresponding annual ETc (59.6 inches, **Figure 2**) should be the most correct estimate of non-soil-water-limited almond Kc. On an individual tree basis,

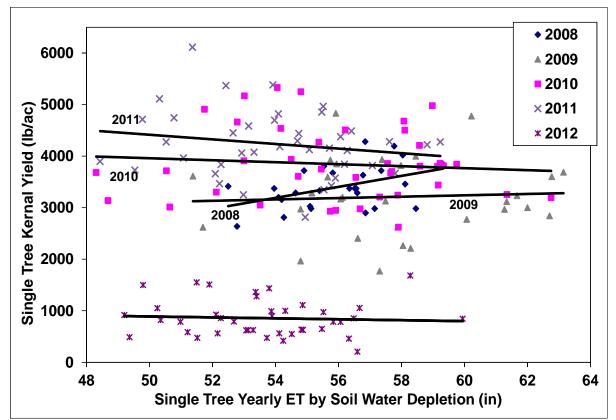

ETc values approaching 64 inches per year were measured, but these high rates of ETc were not associated with any increases in tree yield (**Figure 3**), and hence it appears that while almonds can use this amount of water, yield may not respond to the increasing water use above about 52 inches. Our current Kc recommendation, then, is shown as the "Sanden SSJV Kc" (**Figure 2**), which corresponds to about 52 inches per year.

Figure 1. Comparison of 4 years of mature almond crop coefficients (Kc) generated from EDDY COVARIANCE heat flux estimates of crop ET divided by the modified Penman ETo from the Belridge CIMIS station #146, 1.5 miles due west of orchard.

Figure 2. Comparison of older published crop coefficients, Kc, for almonds to current practice (Sanden SSJV) and the average of actual 2008-2011 measured values.



Figure 3. Yield variation as a function of tree specific ET estimated by weekly measurements of applied water and soil water content change.

Midday stem water potential (SWP) values over five years showed somewhat less stress for the double-line drip compared to the fanjet, as well as small increases in soil water content and yield (last two years shown in **Table 1**). However, since the drip and fanjet blocks were separate areas of the field it is not clear if these small differences were due to decreased water lost to surface evaporation in the drip or small differences in soils, This question is currently under investigation. No statistical difference was seen in individual tree ET due to N rate or yield (Table 1). Average tree ET estimated by applied water and water content depletion (neutron probe method) was virtually the same as that estimated by meteorological energy balance (eddy covariance, Figure 1 and Table 1) except for 2011 and 2012, due to likely calibration errors in heat flux for those years. From 2009 through 2012, hull rot has been a problem- generally increasing every year. Alternaria and rust appeared starting 2011, but kernel yields increased every year from 2009-11, averaging 4,056 lb/ac/yr over this three year period for the 275 lb/ac N treatment. In 2012, yields crashed to an average of 816 - 818 kernel pounds/ac across the plots (Table 1), most likely due to carbohydrate depletion, poor bloom conditions, and severe stress/defoliation starting in August 2011 (Figure 4) resulting from low levels of soil moisture after attempts to control hull rot with regulated deficit irrigation during hull split. Some tree SWPs reached -20 bars. During 2012 there were four fungicide applications, but still significant infestations of hull rot, some rust, and some alternaria were accompanied by substantial leaf drop over the season. However, the orchard was virtually unstressed the whole 2012 season (Figure 5); averaging a season-long SWP of -7.6 and -8.5 bars for the drip and fanjet irrigation, respectively. Net water use efficiency was 93% to 95%.

2011	Stem Water		Soil Water Content		Total Neutron		SWP-NP Tree Kernel		Whole Plot Kernel	
Treatment	t Potential (bars)		to 9 feet (in)		Probe ET (in)		Yield (lb/ac)		Yield (lb/ac)	
(N-K lb/ac)	Drip	Fanjet	Drip	Fanjet	Drip	Fanjet	Drip	Fanjet	Drip	Fanjet
125-200	-9.3 b -	10.3 a	17.1 ab	15.5 a	53.8 a	54.7 a	3917 a	3659 a	3653 a	3798 a
200-200	-9.5 a -	10.4 a	17.5 ab	15.5 a	53.7 a	53.4 a	4034 a	3951 ab	4123 ab	4012 a
275-200	-9.3 b -	10.5 a	19.4 b	18.0 a	54.1 a	54.2 a	4621 b	4365 bc	4670 b	4416 b
275-300	-9.3 b -	10.4 a	17.6 ab	16.1 a	54.6 a	53.7 a	4586 b	4702 c	4886	4447 b
350-200	-9.0 c-	·10.5 a	15.3 a	16.5 a	55.2 a	52.8 a	4596 b	4273 bc	4854	4476 b
AVERAGE	-9.3 -	10.4	17.4	16.3	54.3	53.8	4351	4190	4437	4230
LSD 0.05	0.2	0.2	2.7	2.9	4.0	2.9	539	472	557	313
2012	Stem W	ater	Soil Water	r Content	Total I	Neutron	SWP-NP 1	Free Kernel	Whole Plo	ot Kernel
			Soil Water to 9 fee			Neutron ET (in)		Гree Kernel (Ib/ac)	Whole Plo Yield (
2012	Stem W Potential									
2012 Treatment	Stem W Potential Drip	(bars)	to 9 fee Drip	et (in)	Probe	ET (in)	Yield	(lb/ac)	Yield (lb/ac)
2012 Treatment (N-K Ib/ac)	Stem W Potential Drip -7.5 a	(bars) Fanjet	to 9 fee Drip	et (in) Fanjet	Probe Drip 53.3 a	ET (in) Fanjet	Yield Drip	(Ib/ac) Fanjet	Yield (Drip	lb/ac) Fanjet
2012 Treatment (N-K Ib/ac) 125-200	Stem W. Potential Drip -7.5 a -7.6 a	(bars) Fanjet -8.2 c	to9 fee Drip 17.7 ab	et (in) Fanjet 16.3 a	Probe Drip 53.3 a	ET (in) Fanjet 53.5 a	Yield Drip 754 a	(Ib/ac) Fanjet 865 a	Yield (Drip 894 a	Ib/ac) Fanjet 757 ab
2012 Treatment (N-K lb/ac) 125-200 200-200	Stem W Potential Drip -7.5 a -7.6 a -7.5 a	(bars) Fanjet -8.2 c -8.4 b	to 9 fee Drip 17.7 ab 17.9 ab	et (in) Fanjet 16.3 a 16.3 ab	Probe Drip 53.3 a 55.1 a 54.9 a	ET (in) Fanjet 53.5 a 51.4 a	Yield Drip 754 a 630 a	(Ib/ac) Fanjet 865 a 911 ab	Yield (Drip 894 a 680 a	l b/ac) Fanjet 757 ab 765 ab
2012 Treatment (N-K Ib/ac) 125-200 200-200 275-200	Stem W. Potential Drip -7.5 a -7.6 a -7.5 a -7.5 a	(bars) Fanjet -8.2 c -8.4 b -8.4 b	to 9 fee Drip 17.7 ab 17.9 ab 18.3 ab 18.3 ab	et (in) Fanjet 16.3 a 16.3 ab 20.0 b	Probe Drip 53.3 a 55.1 a 54.9 a 56.2 a	ET (in) Fanjet 53.5 a 51.4 a 54.2 a	Yield Drip 754 a 630 a 860 a	(Ib/ac) Fanjet 865 a 911 ab 1165 bc	Yield (Drip 894 a 680 a 833 a	Ib/ac) Fanjet 757 ab 765 ab 939 b
2012 Treatment (N-K lb/ac) 125-200 200-200 275-200 275-300	Stem W Potential Drip -7.5 a -7.5 a -7.5 a -7.5 a -7.7 a	(bars) Fanjet -8.2 c -8.4 b -8.4 b -8.8 a	to 9 fee Drip 17.7 ab 17.9 ab 18.3 ab 18.3 ab	et (in) Fanjet 16.3 a 16.3 ab 20.0 b 17.5 ab	Probe Drip 53.3 a 55.1 a 54.9 a 56.2 a	ET (in) Fanjet 53.5 a 51.4 a 54.2 a 52.2 a	Yield Drip 754 a 630 a 860 a 744 a	(Ib/ac) Fanjet 865 a 911 ab 1165 bc 810 a	Yield (Drip 894 a 680 a 833 a 767 a	Ib/ac) Fanjet 757 ab 765 ab 939 b 677 a

Table 1. Seasonal averages and totals for SWP, soil moisture, irrigation, ET, and yields by N-K rate for 2011 and 2012.

Figure 5. Late Nonpareil harvest with significant leaf drop, but unstressed trees with full canopy and excellent shoot/spur development for 2013 (9/6/12).

Research Effort Recent Publications:

None at this time.