Evaluating Nitrogen Use Efficiency in Almond Using an Isotopic Tracer Approach

Project No.:	08-AIR4-Smart	
Project Leader:	David R. Smart Department of Viticulture & Enology UC Davis One Shields Avenue Davis, CA. 95616 (530) 754-7143 drsmart@ucdavis.edu	
Project Cooperators	and Personnel:	

John Edstrom, Farm Advisor, UCCE - Colusa County Kate Scow, Professor, Department of Land, Air & Water Resources, UC Davis Daniel L. Schellenberg, Graduate Student Researcher, Department of Viticulture and Enology, UC Davis Christine Stockert, Graduate Student Researcher, Department of Viticulture and Enology, UC Davis

Objectives:

The overarching objective we are addressing in this project builds upon the experiments established at the Nickels Soil Laboratory to diminish emissions of N_2O and acquire information on soil C sequestration for almond. These objectives are designed to get preliminary information concerning the application of a ¹⁵N tracer to experiments being conducted at the Belridge almond orchard near Lost Hills, California, which is part of a larger experiment examining nitrogen use efficiency under different N input amounts and irrigation systems.

 To conduct preliminary experiments on the use of ¹⁵N enriched (10% to 50%) CAN17, as a tracer to examine N-loss and thus have better constrained estimates of nitrogen use efficiency by almond as well as potential environmental impacts.

Interpretive Summary:

The increase in concentration of the three major greenhouse gases (GHGs) of carbon dioxide (CO_2), nitrous oxide (N_2O) and methane (CH_4) is leading to indisputable changes in global climates. Climatic alterations that will adversely affect California agriculture include increased temperatures, more restricted water resources (snowpack), flooding and shifts in seasonal precipitation patterns (Prather et al. 1994; Hayhoe et al. 2004; Houghton et al. 1995). During the past 250 years CO_2 has

increased by $31\pm4\%$, CH₄ by $151\pm4\%$ and N₂O by $19\pm5\%$ (Forster et al. 2007). The current concentration of N₂O, the major subject of this investigation, was 319 ppb in 2005 (Forster et al. 2007) as compared to its pre-industrial concentration of 270 ppb. Nitrous oxide has 298 times the global warming potential (GWP) of CO₂ based on radiative forcing characteristics and atmospheric lifetimes of the respective gas molecules (IPCC, 2001). Although the rate of increase of N₂O in the atmosphere (at about 0.27% per year), is slower than that of CO₂ (and CH₄), this slower rate is offset by its higher GWP. The primary global sink for N₂O involves photolytic reactions with excited oxygen [O(¹D)] in the stratosphere to produce nitric oxide (NO) which consumes stratospheric ozone(Cicerone, 1987). For these reasons, the importance of N₂O as a GHG, whose anthropogenic emissions need to be understood and constrained has not been underestimated, and its link to nitrogen (N) fertilizer use is currently under increasing scrutiny by regulatory organizations.

At the global scale, annual emissions of N₂O from cropped soils are estimated at 3.3 Tg N₂O-N yr⁻¹ which is about 6% of the global anthropogenic CO₂ emissions from fossil fuel combustion (Forster et al. 2007; Kroeze et al. 1999). This quantity, and the factors that contribute to it, remain very poorly estimated (Boumann et al. 2002; Stehfest and Boumann, 2006). Uncertainty surrounding N₂O emissions ranges from 30 to 300% (IPCC, 2001) and recent comprehensive reviews of the N₂O literature place confidence intervals around N₂O emissions from agricultural systems at from -81 to 621% with coefficients of variation on annual N₂O emissions from over 1000 observations at -40 to +70 % (Olivier et al. 1990; Winiwarter and Rypdal, 2001). Winiwarter and Rypdal (2001) reported coefficients of variation on N₂O emissions from agricultural soils that ranged from 100 to 900%. The skewed positive distribution is typical for a gas with emissions that are greatly accelerated by events such as precipitation, irrigation, N fertilizer application and non-uniform distribution of organic C (Parkin, 1987). Disaggregation of N₂O emissions estimates based on environmental parameters (climate, soil organic C, texture, drainage and pH); and management-related factors (N application rate, fertilizer type, type of crop, eq. N fixation versus non-N fixing, and forage type) (Stehfest and Boumann, 2006; Winiwarter and Rypdal, 2001) verifies that N fertilizer application is the primary variable driving agricultural N₂O emissions. Variation in N₂O emissions is the main source of uncertainty in efforts at national inventories of agricultural GHG emissions, and current estimates of N₂O production by agricultural soil management is the subject of much debate.

Agricultural related activities in California are thought to account for up to 70% of N_2O production (Franco et al. 2002). We estimate that 52% of this amount is related to soil management, mainly N fertilizer applications (Carlisle et al. 2009), while the rest is attributed to manure management. Agriculture accounts for over 12% of the total State GHG budget when forest sequestration (CEC, 2004) is excluded. It is for the above reasons it has been concluded that N management in agriculture plays an unequivocal quantitative role in statewide GHG production by regulatory agencies. The State is committed to reduce its GHG emissions to the 1990 level by 2020 as stipulated in approval of the Global Warming Solutions Act of 2006 (AB 32), and to an 80% reduction of the 1990 GHG emission levels by 2050 as mandated by Executive Order S-3-05 signed by the by the Governor on June 1, 2005. Greater than half of agricultural N₂O

production in California derives from application of N fertilizer, and manure management (IPCC, 2001), and this is true for California's terrestrial ecosystems as well (Franco et al. 2002). It is therefore critical that we develop an enhanced understanding of the biophysical factors controlling N₂O emissions to foster development of mitigation strategies. Accurate quantification requires robust measurements of annual budgets of N₂O emissions and accurate ground verification exercises to calibrate biogeochemical simulation models that can estimate annual N₂O budgets for a range of representative crop management systems in California. Not only are N₂O strongly influenced by environmental conditions such as climate, soil type, and cropping system (Mosier et al. 1996; Boumann et al. 2002b) but an explicit spatial component exists in directed fertilization and irrigation events. Uncertainties in estimates of N₂O emissions from California agricultural systems exemplifies a lack of data, but also our inability to understand the mechanisms that contribute to temporal and spatial heterogeneity of emissions. Clearly, a more dynamic approach that includes spatial and temporal variation in N₂O emissions following fertilization and irrigation is needed. Such refinements must be grounded in improved information concerning temporal and spatial variation of water and N management. The vast majority of research concerning N GHG emissions from cropping systems in continental North America has been conducted for dryland farming systems in Midwest of the USA (Kahlil et al. 2002). In the arid climatic regimes of the West, irrigation events saturate soil water-filled-pore-space (WFPS), and intervening periods of high temperatures and aridity are the rule rather than the exception.

The primary goal of this investigation is to examine the concept of NUE where an opportunity exists within a vertically integrated project on nutrient use efficiency being conducted by Dr. Patrick Brown and colleagues at UC Davis in the Departments of Plant Sciences and Land, Air & Water Resources. The purpose of that project is to establish new critical values for potassium (K) and nitrogen (N) fertility and re-evaluate the amounts of N applied relative to both production and environmental impacts. The effort described in this proposal that will be conducted within the project being led by Dr. Patrick Brown represents an attempt to help 'close' the N budget within the context of more practical definitions of NUE e.g. yield per unit N. We are currently conducting a comprehensive project examining various forms of fertigation (surface drip, microsprinkle and subterranean drip) to examine ways in which emissions of N₂O loss from N fertilizer application can be mitigated. The current proposed project will provide more comprehensive information on the fate of N lost during fertigation, including that of the denitrification products of N₂, N₂O and the (mostly) nitrification products of NO and NO₂, and that which is absorbed and translocated to wood, leaf and fruit production. Thus, it will provide critical information concerning nutrient use efficiency for nitrogen in California almond production systems. During the current funding period we have been successful in conducting experiments concerning the duration of NO₃ in the drip irrigation zone following CAN applications and in measuring gas fluxes using isotopic enrichment approaches.

Materials and Methods:

$^{15}N_2$ and $^{15}N_2O$ Gas Flux

Our objective was to simulate an application of "CAN17" fertilizer at a rate of 50 lbs N/acre with 25 and 50 atoms percent labeled ¹⁵N. CAN17 is a mixture of Calcium Nitrate and Ammonium Nitrate and contains 17% N. Of this 17%, 11.6% is Nitrate-N and 5.4% is Ammonical-N. Using these proportions we used labeled and unlabeled potassium nitrate and ammonium phosphate instead.

During the summer of 2009, and coinciding with N fertilization events at the Belridge Almond Orchard in Lost Hills, California, 8" diameter (326.85 cm²) and 2" high PVC soil collars were installed. Following installation the next day, 4 L of ultrapure water was added to the collar to wet up the soil over a 2 hour interval. Next, one more liter containing a total of 0.185g N was slowly dripped onto the soil surface at a rate of about 50 ml min⁻¹. The volumetric water content of a sandy clay loam at field capacity is approximately 0.22 with a soil bulk density of 1.4 g/cm³. Thus we calculated that the application of 1L of solution will saturate the collar area to 10 cm depth. In total, 5 L of water was added into the collar area which we measured to wet up about 50cm deep of soil. The treatments were in replicates of 3 and all contained 0.185g N/collar (50 lbs/acre) at 11.6% NO₃-N and 5.4% NH₄-N. Treatment 1 was 0% ¹⁵N (control), treatment 2 was 25% ¹⁵N and treatment 3 was 50% ¹⁵N. We applied 0.185g of unlabeled N to three collars (the control) and sacrificed one of the control collars each day to determine the initial N concentration as well at the rate of decline.

A fabricated soil gas chamber (4.4L headspace including ring) equipped with a manual mixing fan, thermocouple and atmospheric port was placed on the soil collars and 18 ml gas samples were collected using a 20 ml syringe at 3 hours and 24 hours post treatment at 0, 30, 60 min time intervals. The gas samples were first analyzed on a Shimadzu 2014 GC equipped with an ECD detector to measure nitrous oxide fluxes. The samples were then sent to the UC Davis Stable Isotope Facility for measurement of atomic ¹⁵N% and $\delta^{15}N_2$. After the last flux on the third day, soil KCI extract samples for nitrate and ammonia were collected on the rest of the collars.

¹⁵N enrichment in the gas samples was calculated according to:

$$\delta^{15}$$
N = (R_{sample}/R_{standard} - 1) * 1000 per mil (‰)

where R is the ratio of the abundance of ¹⁵N on the sample as compared with a natural atmospheric N₂ standard of 0.3663% ¹⁵N (the naturally occurring concentration of ¹⁵N in the Earth atmosphere) and expressed as a 'per mil' rather than the conventional 'percent', although when enrichment levels were high, we have used percent in some cases.

Results and Discussion:

When an isotopic tracer of ¹⁵N is employed, estimating a gas flux from soil involves knowing the concentration and ¹⁵N abundance on resident soil NH_4^+ and NO_3^- and the abundance of ¹⁵N within those soil pools. In the current experiments we assumed the abundance of ¹⁵N in the soil mineral pools was equal to the natural abundance at 0.3663%. The duration of NH_4^+ and NO_3^- in the soil pool was longer than we had expected based on gas flux analyses alone, and NH_4^+ pools declined somewhat faster than NO_3^- pools (**Figure 1**). This result was not entirely unexpected in as much as 1) the soil NH_4^+ pool may degas to some extent since the pH is slightly basic, thus driving losses of NH_3 gas, or, 2) that oxidation of NH_4^+ to NO_3^- by nitrification simultaneously depletes and enriches the soil NH_4^+ and NO_3^- pools, respectively. During the fertilization event where 15N enriched NH_4^+ and NO_3^- were applied, the dynamics of mineral N in the soil were quicker, with both pools becoming depleted to nearly 25% of their initial enrichment levels within 48 h following application (see Table 2).

Figure 1: Soil NH₄⁺ and NO₃⁻ concentration trajectories for 24 h prior to and approximately 180 h following a fertigation of 50 lbs. per acre UAN32 (open circles) and CAN17 (closed circles).

During the fertigation events, or the experiments we conducted where CAN17 was enriched with 25 and 50 percent ¹⁵N in balanced ratios of ¹⁵NO₃⁻ and ¹⁵NH₄⁺, we were able to detect sufficient enrichment in N₂O gas emissions from the soil to estimate the flux of N₂O coming from the recently applied fertilizer (**Figure 2**).

Figure 2: The ${}^{15}N_2O$ -N flux relative to the total N₂O-N flux from the drip zone of a soil fertilized with 25% and 50% ${}^{15}N$ enriched CAN17.

We were able to detect some ¹⁵N enrichment in the N₂ pool of gas entering the soil chamber (see **Table 1**) but it is uncertain whether this quantity of ¹⁵N was sufficient to estimate an N₂ loss rate for the fertilizer event we monitored. Future experiments will have to rely on microcosms where either heliox (78% helium, the MS carrier gas, and 21% oxygen) or argonox environments (78% argon and 21% oxygen). These experiments are underway and are valuable in as much as they will allow us to manipulate soil water contents and other variables that affect the N₂ to N₂O production ratio, and such data can be used to modify the DNDC model for application to almond.

Table 1: The δ^{15} N	2-N measured after the fertigation treatment. Ambient air contains a	δ
¹⁵ N ₂ -N of -0.81 un	ts. We are able to detect small amounts of $^{15}N_2$.	

$\delta^{15} N_2$ 3 hrs after treatment						
25	0.42 ± 0.25	0.55 ± 0.18				
50	0.15 ± 0.10	0.11 ± 0.08				
24 hrs after treatment						
% ae N applied	30 min	60min				
25	0.37 ± 0.04	0.34 ± 0.06				
50	-0.51 ± 0.20	-0.64 ± 0.16				

On the other hand, we were able to detect ¹⁵N isotopic enrichment in N₂ gas for the pool emitted into the flux chamber consisting of ¹⁵N¹⁵N (mass 30) (see **Figure 3** and **Table 2**). We are currently exploring the possibility this enrichment can be used at the field level for assessing *in situ* losses of CAN or UAN during fertigation events and experiments for which this program was originally mounted, that of examining nitrogen use efficiency at the scale of an entire tree-soil system.

Figure 3: ¹⁵N isotopic enrichment (%) of N₂ gas in the flux chamber of the rarer 30/28 N₂ ($^{15}N^{15}N$) enriched pool.

Table 2: Soil ammonium and nitrate concentrations, soil gravimetric water content (GWC) and soil temperature during the short duration of an experiment where ¹⁵N enriched NO_3^- and NH_4^+ were added as a CAN17 formulation.

hours	ug NO ₃ -	ug NH4 ⁺		
after fertigation	cm-3 dry soil	cm⁻ ³ dry soil	Soil GWC	Soil Temp C
-1	10.606	97.416	0.062	-
3	1238.808	795.802	0.133	27.70
24	406.869	184.569	0.077	26.06
48	298.223	232.122	0.078	27.75

References:

- Khalil, K., Mary, B., and Renault, P., 2004. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O₂ concentrations. *Soil Biology and Biochemistry* 36:687-699.
- Li, X., Nishio, T., Uemiya, Y., and Inubushi, K., 2002. Gaseous losses of applied nitrogen from a corn field determined by 15N abundance of N₂ and N₂O. *Communications in Soil Science and Plant Analysis* 33:2715-2727.
- Panek, J.A., Matson, P.A., Ortiz-Monasterio, I., and Brooks, P., 2000. Distinguishing nitrification and denitrification sources of N₂O in a Mexican wheat system using 15N. Ecological Applications 10:506-514.
- Wulf, S., Lehmann, J., and Zech, W., 1999. Emissions of nitrous oxide from runoffirrigated and rainfed soils in semiarid north-west Kenya. Agriculture, Ecosystems and Environment 72:201-205.
- Hayhoe, K., et al., *Emissions pathways, climate change, and impacts on California.* Proceedings of the National Academy of Sciences of the United States of America. 2004. 101:12422-12427.
- IPCC (2007) Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 2. Cambridge University Press, Cambridge.
- Prather, M.E.A., et al. *Climate Change*. ed. J.T. Houghton et al. 1994, Cambridge University Press: New York. pp. 73-126.
- Hayhoe, K., et al., *Emissions pathways, climate change, and impacts on California.* Proceedings of the National Academy of Sciences of the United States of America., 2004. 101(34): p. 12422-12427.
- Houghton, J.T. et al., eds. *Climate Change 1995: The Science of Climate Change.* 1995, Cambridge University Press, 1996.: New York. 572.
- Forster, P., et al., Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Quin, M. Manning, Z Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007.
- IPCC, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 2001, Cambridge University Press: Cambridge.
- Cicerone, R.J., Changes in stratospheric ozone. Science, 1987. 237: p. 35-42.
- Stehfest, E. and L.J.M. Boumann, N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 2006. 74: p. 207-228.
- Kroeze, C., A. Mosier, and L. Bouwman, 1999. Closing the global N₂O budget: A retrospective analysis 1500-1994. Global Biogeochemical Cycles, 1999. 13(1): p. 1-8.

- Olivier, J.G.J., et al., *Global air emission inventories for anthropogenic sources of NOx,* NH_3 and N_2O in 1990. Environmental Pollution, 1998. 102: p. 135-148.
- Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes, *Emissions of N*₂O and NO from *fertilized fields. Summary of available measurement data.* Global Biogeochemical Cycles, 2002. 16: p. 1058-1872.
- Winiwarter, W. and K. Rypdal, Assessing the uncertainty associated with national greenhouse gas emissions inventories: a case study for Austria. Atmospheric Environment, 2001. 35: p. 5425-5440.
- Parkin, T.M., Soil microsites as a source of denitrification variability. Soil Science Society of America Journal, 1987. 51: p. 1194-1199.
- Del Grosso, S.J., et al., *DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States.* Journal of Environmental Quality, 2006. 35(4): p. 1451-1460.
- Carlisle, E., D.R. Smart, and M. Summers, *California Vineyard Greenhouse Gas Emissions: An Assessment of the Available Literature and Determination of Research Needs.* unpublished white paper, 2009 (122 pages).
- Franco, G., et al., *Inventory of California Greenhouse Gas Emissions and Sinks:1990-1999.* 2002, California Energy Commission: Sacramento, Calif.
- Mosier, A.R., et al., *Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation.* Plant Soil, 1996. 18: 195-108.
- Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes, *Modeling global N₂O and NO emissions from fertilized fields.* Global Biogeochem Cycles, 2002. 16.
- Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes, *Emissions of N*₂O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 2002. 16(4).

Recent Publications:

- Steenwerth, K.L., D.L. Pierce, E.A. Carlisle, R.G.M. Spencer and D.R. Smart (2009) *Tillage disturbance and precipitation affect soil respiration under Mediterranean conditions*. Soil Science Society of America Journal (in press)
- Smart, D.R., E.C. Suddick, K.M. Scow, P.H. Brown, T. DeJong (2009) An Assessment of the Carbon Sequestration Opportunities and Greenhouse Gas Emissions Attenuation by Almond Orchards in California. (in review)