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( THE EFFECTS OF UNCERTAINTY AND ADJUSTMENT COSTS 
ON INVESTMENT IN THE ALMOND INDUSTRY 

Research on investment analysis peaked in the late sixties concurrent with professional 

interest in aggregate econometric models. The past few years have witnessed a renewed 

interest in investment analysis with emphasis on uncertainty, adjustment costs and 

informational imperfections. Recent analyses dealing with asymmetric information include 

Bernstein and Nadiri (1986), Fazzari and Athey (1987), Greenwald, Stiglitz and Weiss 

(1984), Myers and Majluf (1984), Sinai and Eckstein (1983), and Stiglitz and Weiss 

(1986). Abel (1983), Hartman (1972, 1973, and 1976), Lucas and Prescott (1971), and 

Pindyck (1982) analyze investment under uncertainty with adjustment costs. Recent 

empirical studies in this vein are Abel and Blanchard (1986), Craine (1975), Kokkelenberg 

and Bischoff (1986), Meese (1980), and Pindyck and Rotemberg (1983). Evaluative 

( studies of empirical investment models include Bernanke, Bohn and Reiss (1988), 

Chirinko and Eisner (1983), Clark (1979) and Uri (1982). 

( 

This paper presents a model of investment behavior which incorporates uncertainty and 

adjustment costs. This formulation is based on maximizing the expected present value of 

profits. Under the assumptions of quadratic adjustment costs and fixed coefficient 

technology, the time path and the determinants of investment under uncertainty are derived. 

The model is then tested on a specific industry, almond production, which has undergone 

considerable investment over the past fifteen years and for which there is substantial 

uncertainty. In Section I the theory is developed and related to the existing literature. 

Section n presents a brief discussion of the almond industry, specifies the model and its 

error structure, and details the estimation procedure .. Section III gives the econometric 

estimates of the model and a prediction interval test which compares the performance of the 

model to similar specifications without uncertainty and adjustment costs. Also presented 

are the short and long run impacts of changes in various investment determinants. 
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I. A TECHNOLOGY SPECIFIC INVESTMENT MODEL 

The neoclassical investment model assumes that fInns choose investment levels to 

maximize the expected present value of the fInn. This neoclassical paradigm as 

implemented by Jorgenson 1. uses the shadow price of capital services. referred to as the 

user cost of capital, to defme the optimal level of capital stock. The use of this shadow 

price implies a high degree of perfection in the capital markets. In this formulation, the 

present price and output serve as expectations for future price and output levels. While 

there is nothing inherently incorrect with this formulation, it does involve specifIc 

assumptions about capital markets, expectations, and the production process, i.e. Cobb­

Douglas. Maximization of the present value of the fIrm leads to optimal demand paths for 

variable factors as well as capital stock. Subsequent generations of this neoclassical 

formulation have specified more flexible functional fonns, added adjustment costs, and 

made alternative assumptions about the formation of expectations. 

Although still neoclassical in nature, the model developed here departs from previous 

studies in several ways. Previous studies using the neoclassical model have taken output 

as exogenous. Output is a choice variable along with input levels and is inappropriate on 

the right hand side of an investment equation. Also, we do not rely on a user cost of capital 

concept. By assuming a flXed coeffIcient technology for almonds, the maximization 

problem can be solved while treating output as an endogenous variable.2 The exogenous 

variables in this model are the prices of factor inputs and the output price. Because the 

technology in almond production is approximately Leontief, the main consideration in this 

industry is not factor substitution, but rather the decision to change the level of output. In 

1 Literature on the neoclassical model is quite large. An excellent survey of the neoclassical, and other 
investment models, can be found in Jorgenson (1971). A survey of more recent developments in the 
neoclassical model can be found in Berndt, Morrison and Watkins (1981). 

2 Output can also be determined endogenously through the specification of a profit function, cf. LeBlanc 
and Hrubovcak (1986). For an alternative consideration of the treatment of output see Pindyck and 
Rotcmberg (1983), page 1068. 
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order to develop a theoretical model utilizing Leontief technology, we build on Wickens 

and Greenfield's (1973) study of the coffee market. The model derived here departs from 

Wickens and Greenfield by introducing uncertainty. 

To derive the investment equation we begin by noting that current output can be written 

as a weighted sum of past investment levels, or 

(1) Qt = rr=o Yil1t-i 

where Qt is output in t, It-i is the new investment in almond acreage in year t-i, Yit is the 

yield (output per acre) of i year old trees in year 1, and n is the lifespan of the trees. The 

above fonnulation implies that the fixed amounts of the other factors of production are also 

supplied. By assuming that weather affects yields each year and that there was no technical 

change during the period studied, the Yit can be considered random variables with time­

constant means, or 

(2) E(YiU = Yi for all 1. 

Firms are assumed to maximize the expected present value of net revenue. Each finn 

faces two constraints: a production function and a time trajectory for output. The equation 

for output simply brings to bear the physical realities of almond production. Ahnond trees 

do not produce a harvestable crop until the third or fourth year. Yields then increase 

rapidly until full production is reached, hold steady for about twenty years, and then begin 

to decline. Because the age profile (vintage) of the trees evolves in a known pattern and 

because there is a lag between investment and production there is a restriction on changes in 

expected output. Weather, of course, makes actual output move in a more discontinuous 

and random manner. Thus, the problem of maximizing the expected present value can be 

written as 

(3b) s.t. 

3 



( 

(3c) 
• ~n 

Q = """i=O (Yi - Yi-l) It-i 

where p is the price of output, c is cost per acre (described in more detail in Section ll), C 

is fIxed costs, r is the discount rate, and g(I) represents the adjustment costs of additions to 

the capital stock. Prices and costs are not known as of t and are considered to be random 

variables. 

Substituting (3b) into (3a) allows a simplification of the Hamiltonian (H), which now 

can be written as 

where 1tt = (Pt - Ct) and the At'S are the costate variables. The necessary conditions for an 

optimum are 

~n' ~n' (5) aH/aIt = E{"""i=O (l+r)-l1tl+i Yi - g'(It) + """i=O (l+r)-l (Yi - Yi-l) At+i } = 0 

• ~n 

(7) Qt = """i=O (Yi - Yi-l) It-i 

where the dot represents a time rate of change. Investment will change output for a number 

of future periods, so that (5) is the sum of a set of aHtfaIt = 0 conditions. 

Assuming that g'(It) is known, (5) can be solved for g'(It). To further simplify, note 

that the fIrst sum on the right hand side of (5) is simply the expected present value of one 

acre of almonds planted in year t. By defining this expected present value of investment as 

~n . 
(8) EPVIt = E{ L,i=o(1 +rtl 1tl+i Yi }, 

the relation (5), is now 

(9) g'(lt) = EPVIt + E{ L~o (l +r)-i (Yi - Yi-l), At+i }. 

The At's are the shadow price of a marginal relaxation of the associated constraint. This 

makes each At the value of an extra change in the change in output. From (6), it is clear 
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that in a steady-state equilibrium A would equal zero. Therefore, values of A that differ 

from zero indicate a system that is not in equilibrium. The system will be away from 

equilibrium when flrms realize that actual values differ from their expectations or when 

their expectations about the future change. Therefore, we employ a measure of uncertainty 

as a proxy for the weighted sum of the (unobservable) At+i. 

The uncertainty measure chosen as a proxy for the second term on the right hand side 

of (9) is the variance of the EPVI's. This choice is motivated by two considerations. First, 

as the A's change, so do the EPVI's, through the relations in (5) and (6). Thus if the A's 

are large, indicating that the system is away from equilibrium, the EPVI's should exhibit a 

large variance. Second, Abel (1983), Hartman (1972, 1973, 1976), and Pindyck (1982) 

showed that changes in uncertainty cause changes in investment levels. In general, the 

uncertainty considered was a mean preserving spread in prices. The equivalent here would 

be a mean preserving spread in the 1tt. Variation in 1t will be closely related to the variance 

of the EPVI (02). 

Given the above discussion, the relation for investment can be written 

(10) g'{lt} = EPVIt + Y 02 

where the parameter y is added since 02 will at least differ by a scale factor from the var(1tt) 

and because it is a proxy for the weighted sum of the A's. Assuming g(lt> to be quadratic 

(Le., g(It) = bIt + cIt2 }, the flnal equation becomes 

(11) It = Bo + BlEPVIt + B2 02t. 

While the variance of the expected present value of investment offers a reasonable 

measure of uncertainty, it should be cautioned that the coefficient for this variable cannot be 

interpreted as a risk aversion coefficient in the normal Pratt-Arrow sense. This is due to the 

multi-period nature of the investment decision. With serially connected payoffs over a flnite 

asset life, conventional results about attitudes toward risk do not necessarily apply 

{Newberry and Stiglitz (1981}). We have avoided assumptions regarding maximization of 
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the utility of present value for this reason. While no claims are made here that the 

investment model deals with risk, it does have an explicit treatment of uncertainty. 

Several earlier studies have shown the complexities involved in the response of 

investment to changes in the level of uncertainty. Hartman (1972, 1973) demonstrated that 

a mean preserving spread in agents' subjective prior joint distributions of prices can 

increase investment in risk neutral fmns. Because each fmn's short-TUn profit function is 

convex in prices, the increased uncertainty raises the expected marginal revenue of a given 

capital stock. Abel (1983) provided explicit solutions by specifying Cobb-Douglas 

technology and convex adjustment costs. Pindyck (1982) used more general production 

and adjustment cost functions and showed that an increase (decrease) in future uncertainty 

leads to a higher optimal path for the capital stock if the marginal cost of adjustment is 

convex (concave) in investment. Theoretical developments, then, provide a clear basis for 

including a measure of uncertainty in the investment equation. Theory, though, cannot 

provide an a priori sign for this variable. Nor can the agents' attitude toward risk be 

inferred from the sign {Pindyck (1982)}. Thus, the empirical results will show agents' 

investment response to cha~ges in uncertainty, but not the agents' attitudes toward risk. 

II. ECONOMETRIC SPECIFICATION AND ESTIMATION 

The almond industry was selected for a number of reasons. First, it is possible to 

obtain detailed microdata on costs, plantings, yields and prices for this industry. Second, 

there has been a high level of investment in almond orchards over the past twenty years. 

Third, the technology of growing and harvesting almonds has changed little over this 

period, obviating the need to deal with technological change. Fourth, production of 

almonds is characterized by near Leontief technology thus reducing the scope of factor 

substitution and facilitating the computation of present value. Fifth, the industry is 

reasonably competitive and is not dominated on the supply side by any single large 

producer. Sixth, returns in the almond industry are characterized by considerable variation. 
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This variation occurs mainly because of substantial weather induced fluctuations in yields. 

Hence, substantial uncertainty exists regarding future levels of profits. Lastly, output is 

homogeneous which further minimizes aggregation problems. 

After planting, four years are required before almond trees reach sufficient maturity to 

yield a harvestable crop. These acres are then included in bearing acreage. Hence, it is 

possible to separate the delivery lag from the expectational lag, a problem which Abel and 

Blanchard (1986) noted for the neoclassical model. The main costs incurred during this 

period, in addition to acquiring the land, are the cost of the seedling trees, installation of an 

irrigation system, planting, cultivation, pruning, fertilization and management. In order to 

bring one acre of new almond trees into production, approximately $7000 must be spent on 

these depreciable capital items. The model here deals only with new acreage and does not 

consider the sale of existing orchards as investment. There are slightly over 400,000 acres 

in almonds in California for a capital stock value of almost three billion dollars. 

Large scale almond production is a relatively new phenomenon in the U.S. As a result 

there are very few orchards approaching twenty years of age, the typical productive life of 

an almond tree. Hence, removals over the period under consideration, 1970-1985, were 

minimal.3 Due to this four year lag, equation (11) can now be presented in its final form 

(12) N1it = Bo + BIPVlit-4 + B2PVlit-5 + ... +B5PV1it-8 + B6V ARit + Wit 

where 

N1it = (Ait - Ait-I) I Ait-I = percentage additions to bearing acreage in region i, 

PVIit-j - present value of an acre of almonds trees in region i in period t-j, 

Ait - bearing acreage of almonds in the ith region in time period t, 

VARit = var(PVI)it = 0 2, and 

wit = stochastic error term for region i in time period 1. 

3 According to estimates made by Bushnell and King (1986), removals are currently about one percent of 
bearing acreage. We consider this to be minima] in view of the fact that there are more removals presently 
than earlier in the study period. 
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( Thus, the agents' expectations for the EPVI are represented by a weighted sum of five 

years' calculated PVIit's. In effect, the expected present value (EPVI) is a distributed lag 

of current and past present values (PVI's). This fonnulation can be considered as a two 

stage expectations calculation. The calculated PVI's take past prices and costs into account 

to fonn expectations for future prices and costs, but are not fonned as a result of any 

moving average or ARMA of past PVI's. However it is also reasonable to assume that 

agents base expectations of the present values on more than one year's calculation. Hence, 

we specify the EPVI as a distributed lag in the PVI's. In a manner similar to that used by 

Clark (1979), investment is divided by capital stock lagged so that both left and right hand 

side variables are measured on a per acre basis (since the right hand side is measured on a 

present value per acre basis). Dividing only the left hand side of (12) also avoids problems 

of spurious correlation first pointed out by Kuh and Meyer (1955). The PVI are defmed by 

(13) PVIit = (PVit + Dit - Lit)! ft. 

PV is the present value of cash revenues minus costs on one acre of almonds over a 

twenty year horizon viewed from time period t. Costs include non-adjustment cost 

investment expenditures as well as production costs. These costs include the cost of trees, 

irrigation systems, equipment, and other depreciable assets. D is the present value of tax 

savings due to accelerated depreciation and the investment tax credit. L is the current price 

of irrigated farmland in region i and serves as a measure of the opportunity cost of the land. 

At any point in time over the sample period the level of investment will be a function of the 

level of PVI in nominal tenns. However, in order to use the PVI over time in a regression 

equation, they must be converted to constant dollars. The deflator used for this purpose is 

f, prices paid by fanners. This index is composed of prices of various fann inputs. Since 

profits are often re-invested by fanners, this is an appropriate index. As a practical matter, 

it is highly correlated with the CPI and the GNP deflator. A more precise explanation of 
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( how PV and D were computed and the data sources is given below. V ARit is computed by 

the standard sampling variance fonnula using the eight most recent PVI's. 

For purposes of estimation, California was classified into nine growing regions. Seven 

of these regions correspond to counties while the remaining two are groups of counties, 

one in the north and one in the south, whose involvement in almonds is small. The 

following assumptions were made about the error tenn, Wit, 

(14a) E(wit) = 0 

(14b) E(witwks) = 0, Vt ;t s 

(14c) E(wit2) = (Jii, i = 1, ... ,9 

(14d) E(witWkt) = (Jik, i,k = 1 ..... 9. i ;t k. 

Further spatial and temporal error covariance assumptions were made about the (Jik. First, 

the assumption was made that there is no autocorrelation between the error tenns, even 

within a region. While this assumption may seem simplistic in a model with lagged 

variables, it should be noted that all lagged variables are exogenous. Also, a sample 

autocorrelation coefficient was calculated (r=.232) and was not statistically significant. As 

a further test, the model was estimated using the appropriate Prais-Winsten transformation 

which provided no improvement over the model without the correction. Hence, there was 

no autocorrelation correction in the fmal version of the model. The errors however, are 

assumed to have particular non-zero spatial covariances. The nine regions mentioned 

above are grouped into three super-regions (1, 8; 2, 3,4,9; 5,6, 7; see Table 1 for the 

numbering key) corresponding to the Sacramento Valley, Northern San Joaquin Valley, 

and Southern San Joaquin Valley, respectively. On this basis the spatial error assumptions 

are: each region has its own distinct error variance given by (14c), any two regions in the 

same super-region have the same error covariance, and any two regions in two different 

super-regions have the same error covariance. For example, this means that (J23 = (J24 and 

(J25 = (J37. These covariance assumptions are based on the spatial nature of the data set. If 

almonds are profitable in one county, some of the investment thereby encouraged may take 

9 



( 

( 

place in another county. Therefore, non-zero covariances between regions should be 

expected and will likely depend on the proximity of the two regions. Such reasoning leads 

to covariance assumptions of the type made in (14<1). 

Applying the proposed error structure to the model, estimates of the parameters in the 

error covariance matrix, n= E(ww'), were obtained from an OLS regression of the model. 

The OLS residuals were used to estimate each aile parameter, being careful to correct for 

the fact that the regional subsets of the residuals do not have zero means. The fmal 

estimation of the model was then performed using GLS. The estimate of n obtained by 

this method is consistent due to the consistency of the OLS residuals. Lastly, it should be 

noted that n = 1; ® I , where 1; is a 9x9 matrix of the aile dermed above, I is an 8x8 

identity matrix and ® is the Kronecker delta product. Such an error structure, based here 

on the regional nature of the problem, is equivalent to the error structure of Zellner's 

Seemingly Unrelated Regression (SUR). Zellner (1962) showed that such a procedure is 

not only consistent, but also efficient for estimating systems of equations such as these. 

Here the "system" is simply the nine equations, each representing one county or county 

group. Although the variables in each of the equations are identical, the actual values of 

those variables differ across equations because costs, technology, and prices vary by 

county. Hence, there is a gain in efficiency captured by exploiting the familiar SUR error 

structure. The estimates yielded by Zellner's SUR are also unbiased. This fact can be 

important in the small to medium sized samples which are often used in applied work. 

Kakwani (1967) showed that if the disturbance term has a continuous symmetric 

probability density function the Zellner estimators are unbiased. This result is based on the 

fact that 1; is then an even function of the disturbance term, w. Therefore, n = 1; ® I is 

also an even function of w. This result extends to the model used here even though the 8's 

do not vary across the nine regions. 

Estimation of the Production Function. One of,the most important components 

of the PVI is the yield--the output of one acre of almond trees. To estimate the Yi requires 
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the estimation of a production function for almonds. As indicated earlier, there is 

substantial variation in almond yields, due mainly to weather, but also due to the fact that 

almonds are an alternate bearing crop. Almonds have a physiological tendency to alternate 

yearly between relatively heavy and relatively light crops. Because this pattern is weather 

related, all the trees are on the same cycle. lbis phenomenon is difficult to observe due to 

the much larger, weather induced variations. However, any production function must take 

these variations into account to provide an accurate forecast of expected yield for the 

present value computation. Since yield is total output divided by the number of acres, 

estimation of the yield function is equivalent to estimating the production function. 

The production function for almonds was estimated using bearing acreage, rainfall, and 

dummy variables for location and alternate years as regressors. Bearing acreage is the 

number of acres of almond trees four years of age and older. Once in place, the input 

requirements for cultivation, harvesting, pruning, etc. are virtually fixed. Hence, we have 

assumed Leontief technology for our production function. As a result, the usual economic 

inputs, e.g., labor and materials, do not appear in the production function. The costs of 

these inputs do, however, appear in the present value computations discussed below. 

Rainfall is included because the bloom period for almonds falls during California's rainy 

season (February and March). If it rains too much during the bloom period the bees cannot 

pollinate the flowers well and a small crop is the result. A dummy variable was included to 

account for the alternate bearing pattern. 

Using a pooled time-series cross-section data base, production was estimated as a 

function of region (due to climate, soil type, etc.), of alternate years, and of rainfall in that 

region. Dummy variables were employed for eight of the nine regions, with Butte County 

being the base region. A dummy variable that took the values of 0 in even years and 1 in 
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odd years was used to model the alternate bearing phenomenon. The variable for rainfall 

was inches of rainfall in February squared.4 The production model can be written 

(15) Qit = ao + alAit + AitLakRkt + SlAitFRit + AitFRitLSkRkt + ~lAitDt + Vit 

where 

Qit = tons of almond kernels produced in region i, in year t 

Ait = bearing acreage, in thousands of acres for region i, in year t 

Rkt = dummy variable equal to 1 if i = k, 0 otherwise, k=2, 9 

Dt = dummy for alternate bearing, equal to 1 in odd years, 0 in even years 

FRit = inches of rainfall in February, squared, in region i, in year t 

Vit = stochastic error term, 

and the sums are over k from 2 to 9. 

The production relation was also estimated by GLS. The assumptions about the Vit were 

(16a) E(viV = 0 

(16b) E(vitvks) = 0, 

(l6c) E(vitVkt) = «Pik, 

\7't 7i!: S 

\7' i,k = 1, ... ,9 

This gives an error structure where E(vv') = 4l> ® I where I is a 16x16 identity matrix, cl> a 

matrix of the «Pik. The «Pik were estimated from the residuals of the OLS regression of the 

above production model. No spatial restrictions were imposed. 

The data used to perform the estimation were county level data on almond acreage and 

production in California from 1970 to 1985, taken from the relevant County Agricultural 

Commissioner's Reports. The data on rainfall were collected from the National 

Oceanographic and Atmospheric Administration published reports. Within each county a 

weather station nearest the center of the almond growing area was chosen. The data were 

organized into nine regions: seven counties (B uuet Fresno, Kern, Madera, Merced, San 

4 Both rainfall and rainfaU squared were tried with the laller producing better results. The squared effect was 
also found superior in other weather related studies of almond production by the authors. The month of 
February was selected because it is the bloom period for almonds throughout the state. Experimentation 
with later bloom periods for the northern counties did not improve the results. 
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Joaquin. and Stanislaus) and two groups of counties that grow fewer almonds. North 

(Colusa, Contra Costa. Glenn. Solano, Sutter, Tehama. Yolo. and Yuba Counties) and 

South (Kings. San Luis Obispo. and Tulare Counties). Hence. a total of 144 observations 

were used to estimate the production function. The estimates of the production function are 

given in Table 1. 

Symbol 

a2 
a3 
CX4 

as 
<X6 
a7 
as 
a9 

B2. 
03 
~ 
Os 
06 

~ 
Os 
0<] 

Table 1. Generalized Least Squares Estimates 
of Almond Production Function 

Variable 

Intercept 
Bearing acreage (A) 
February rainfall x A 
Alternate bearing dummy x A 

Acreage x Regional Dummies 

A x Fresno 
A x Kern 
A x Madera 
A x Merced 
A x San Joaquin 
A x Stanislaus 
A x North Region 
A x South Region 

Coefficient 

-.402xl()4 

.780 
-.003 
-.076 

.076 

.036 

.075 

.023 

.090 

.067 
-.257 
-.083 

Acreage x February Rainfall x Regional Dummies 

A x FR x Fresno -.005 
AxFRxKem -.011 
A x FR x Madera -.011 
A x FR x Merced -.006 
A x FR x San Joaquin -.015 
A x FR x Stanislaus -.010 

A x FR x North Region .0004 

A x FR x South Region .0002 

t-ratio 

5.84 
17.90 
3.64 
4.13 

1.71 
.89 

1.65 
.34 

1.58 
2.56 
8.37 
1.72 

1.29 
3.94 
2.60 
1.21 
2.82 
4.05 

.51 

.13 

R2 = .927 R2 = .916 s = .984 
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Next, we present the details of the estimation of the various investment models used in 

this paper. These models include: a) the complete EPYI model with uncertainty and 

adjustment costs, b) the EPVI model in the absence of uncertainty, and c) the EPVI model 

with no uncertainty and no adjustment costs, or, as it is commonly called, the accelerator. 

All three specifications are estimated with the same data by the GLS regression technique 

using the error structure outlined above for investment in the period 1978-85, yielding a 

sample of 72 observations for each model. 

The EPVI Model. The EPVI model with uncertainty and adjustment costs is the one 

developed in Section I and given by equation (12). All present value computations in the 

model were done over a twenty year time horizon5 , which is the life of a typical almond 

tree. Hence, 

where 

PVlt - present value of an acre of almond trees in year t, t=1970-1985 

pjt - the expectation in year t for almond price in years t + j, 

Yjt - the expectation in year t for almond yield in years t + j, 

Cjt - the expectation in year t of a vector of input prices in years t + j, 

ljt - the expectation in year t of a vector of input coefficients in year t + j, 

djt - the expected tax savings due to depreciation and investment tax credit in year t + j, 

mjt - the expectation in year t of the marginal tax rate in period t + j, 

rjt - the expectation in year t of the discount rate in year t + j, 

ft - prices paid by farmers in year t. 

5 While we assume a twenty year planning horizon, almond trees can, of course, be left in the ground 
longer. However, yields begin to decline substantially after twenty years due mainly to the impact of 
shaking from mechanical harvesters. Moreover, the effect on present value of an additional year past twenty 
is quite small. 
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The PVI's were computed for each year, 1970-85, for each of the nine regions. The 

expectations assumption used was the following 

(18) Pjt = (1 +gpt~ Pot j=0, ... ,20 

where gpt is the rate of growth of expected prices in period t. The estimate of gpt is based 

on the unweighted average of the past three years rates of growth of prices. Hence, prices 

are assumed to grow at the same rate as they have averaged over the past three years. 

Prices, and their associated gpt'S, are different for each of the nine regions. We have 

deleted regional subscripts here in order to avoid confusion. The same procedure was used 

to estimate the vector of expected input prices, the Cjt's. They also vary by region and are 

composed of prices for herbicides, pesticides, skilled and unskilled labor, trees, planting 

labor, water, fertilizer, bees for pollination, a tractor, harvesting labor and equipment, 

management, and miscellaneous. As a result of the assumptions of Leontief technology 

and no technical change, the vector of ljt's which pertain to the variable inputs, do not 

change over time, but do vary by region and age of orchard. The values of the expected 

yi~ld, also by region, are obtained using the production function estimated above. In order 

to estimate these yields, it was assumed that rainfall in the future would be at its historical 

mean. The data used for the discount rate is the Federal Land Bank long term rate and is 

the same for all regions and is assumed to remain constant for anyone PVIt calculation. 

The tax savings from depreciation, d, was estimated by computing the accelerated 

depreciation (sum-of-the-years' digits) times the marginal tax rate. This category also 

includes the value of the investment tax credit on the qualifying expenditures. For 

example, in orchards the trees qualify for the investment tax credit. The marginal tax rate 

was computed by taking the average of the marginal tax rates on the current dollar 

equivalents to incomes of twenty and eighty thousarld 1965 dollars. Depreciation varies by 

region since input costs vary by region. Following Sims (1972) the model is estimated 

with no constraints on the shape of the lag distribution. 
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The EPVI model presented above has elements of rational expectations theory. The use 

of the production model for yield expectations is consistent with the rational expectations 

hypothesis. In order to fully implement that approach it would be necessary to estimate 

ARIMA type models for each of the input prices and the output price. While this would not 

be an insurmountable task, the short annual time series available for such an estimation 

makes that approach unappealing. Hence, we have chosen to use the moving average 

growth rate assumption although the errors from this method may be autocorrelated. We 

also note that the focus of this paper is not to test the rational expectations hypothesis.S 

The model given here also has similarities to Tobin's q-theory of investment. If prices 

were available over time on almond orchards, it would be possible to compare the 

replacement costs, which are given above, with these prices to determine if investment 

should take place.7 

The EPVI Model Without Uncertainty. If the agents' expectations of the future 

are correct, then the system should always be in equilibrium, given the adjustment costs 

that are still present. Thus, while the PVI can still differ from zero due to adjustment costs, 

the A.t should all be zero. Therefore, the variance of the PVI drops out of the equation, 

resulting in: 

(19) NIit = Bo + BIPVlit-4 + B2PV1it-S + ... +BsPVlit-8 + Wit 

This is essentially the model derived in Wickens and Greenfield (1973). 

The Accelerator Investment Model. If agents face no uncertainty and there are 

no adjustment costs, the EPVI model becomes degenerate. The model yields a 'bang-bang' 

solution, with optimal investment for a given firm either an infinite positive or negative 

amount. Any limit on investment would be physical, not economic. For the industry as a 

whole, the optimal behavior in this situation, given the Leontief technology assumed, is 

S For a test of the rational expectations hypothesis applied to agriculture see Goodwin and Sheffrin (1982). 

7 For examples of the q-theory approach in applied studies see Engel and Foley (1976), Summers (1981), 
and von Furstenberg (1977). 
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represented by the accelerator model. The accelerator model can be considered as a special 

case of the neoclassical investment model. With Leontief technology instead of Cobb­

Douglas, the input demand for the capital services will be 

(20) K"'= a}Q 

where Q is total output. Since K'" represents the desired capital stock (Ait), given a similar 

expectational argument, the model can be written as: 

(21) NIit = 1t> + 'Y16 Qit-4 + Yl&Qit-5 + .•. +'YS6Qit-8 + Wit. 

The accelerator model can, of course, be derived from alternative considerations.8 

III. THE EMPIRICAL RESULTS 

This section presents the GLS estimates for the three models presented above. It also 

gives the results of the prediction interval test and the elasticities for the exogenous 

variables. The estimates of the models are given in Table 2. The EPVI model with 

uncertainty produces a stable lag structure, all coefficients are significant with the exception 

of PVIt-4. The coefficient on V AR is significant and positive. Thus, when faced with more 

uncertainty, agents increase their capital stocks. 

The first R2 in Table 2 is for the GLS residuals and is given by 

(22) R2:GLS = w'O-lw/y'&-ly 

where 0 is as before, 6 = ~ ® AT, ~ is as before, AT = IT - (lff)ii', i is the units 

vector, n is the number of regions, and T is the number of time periods. The R2 for the 

untransformed (UT) data is therefore, 

(23) R2:UT = w'Aw/y'Ay 

where A = loT - (l!nT)ii tf
• Both of the R2 in the table are adjusted for degrees of freedom 

by the standard method. The EPVI model with uncertainty (hereafter, simply EPVI) has 

the best fit by either R2 criterion. The lag structure for the no uncertainty model (NUM) is 

8 Both the accelator and the EPVI model withoul uncertainly were 'estimated in the same manner as the 
EPVI model, i.e. with (Ail - Ail- I> I Ail-l as the dependenl variable. 
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consistent with prior expectations and a little less delayed than the one for the EPVI model. 

The lag structure for the accelerator model (AIM) is sawtoothed and stands in strong 

contrast to the reasonably smooth lags found for both the NUM and the EPVI models. 

Table 2. Generalized Least-Squares Estimates of the 
EPVI, NUM, and AIM Models 

Variable EPVI NUM AIM 

Intercept .68IE-01 .7S3E-0l .038E-Ol 
(11.22)· (8.9S) (4.S4) 

.. X t-4 ,497E-06 -.S4SE-08 . 149E-OS 
(0.68) (0.S3) (1.S8) 

Xt-5 .321E-OS .188E-07 -.208E-06 
(4.86) (1.77) (0.19) 

Xt-6 .S67E-OS . 367E-06 . 174E-OS 
(7.40) (3.32) (1.42) 

X l -7 .499E-OS .262E-06 -.S02E-07 
(6.81) (2.47) (0.03) 

Xt·8 .4S2E-OS .lS2E-08 .SS2E-OS 
(S.44) (1.48) (2.67) 

Var .117E-08 
(3.82) 

R2:GLS .664 .306 .081 
R2:UT .386 .22S .02S 

EPVI - Expected Present Value Model 
NUM - No Uncertainty Model 
AIM - Accelerator Investment Model 

R2:GLS - See text (22) 
R2:UT - See text (23) 

... The numbers in parenthesis are the t-ratios . 

...... The X's represent the independent variables for each 
particular model. Hence, for the EPVI and NUM 
the X's are given by (17), and for AIM by (21) 
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Out of sample forecasts were made to test the forecasting ability and the empirical 

consistency of models. H most of the forecasts fall within one standard deviation of the 

actual values, then a given model can be deemed empirically consistent, even if its forecasts 

are not particularly accurate. H out of sample forecasts errors routinely exceed one 

estimated standard deviation, then the validity of the model must be questioned. Also, the 

calculated confidence levels that are placed on the model and its parameters must be re­

examined.9 

Predictions for net investment in 1986 were made for each region. The results of these 

predictions are presented in Table 3. Below each prediction is the t-value for the forecast 

error (Le. how many standard deviations the forecast fell from the actual value). For a 

prediction interval test done in this manner, as Iowa t-value as possible is desired. The 

covariance matrix of the forecasts for a given model is calculated as: 

(24) V = ~ + R(X'O-tX)-lR'. 

Here, 0 is the error covariance matrix for the given model, and remembering the error 

structure employed, 0 = ~ ® I, X is the in sample data matrix of regressors, and R is 

the out of sample data matrix {Johnston (1986)}. The standard deviation of a particular 

forecast is simply the square root of the appropriate diagonal element of V. For example, 

the t-value for the forecast error of the prediction for region 3 is 

(25) t3 = (8 - Rfi}J/(V33)l/2, 

where 8 is the vector of actual values for net investment, Rfi is the vector of predictions, 

and subscripts refer to rows and columns of vectors and matrices. 

As can be seen from Table 3, there is a definite difference forecasts accuracy, both 

absolute and in terms of standard deviations. For the EPVI and NUM every forecast is 

within one standard deviation of the actual value, while the AIM shows five forecasts that 

fall farther than one standard deviation from the actual value. The reader has surely noticed 

9 For an earlier application of this prediction test 10 invesunent models see Clark (1979). 
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that the standard deviation is model and region specific. Thus, a model with poor 

explanatory power might show itself to be empirically consistent by such a test simply by 

having a large forecast variance. This appears to be the case with the NUM, but not with 

the EPVI. Note that the EPVI model has the highest R2 of the three, both in sample and 

out. Further, it should be noted that the covariance matrix of the coefficients appears in the 

formula for the covariance matrix of the forecasts. Table 2 shows that the EPVI model also 

had the best overall set of t-statistics, which implies a small covariance matrix for the 

forecasts. 

Table 3. Results of Prediction Interval Test 

Region Actual EPVI NUM AIM 

1 867 1788 2088 1841 
(.44)'" (.47) (.60) 

2 -471 948 1360 1937 
(.57) (.36) (1.31) 

3 1980 3781 4174 9244 
(.23) (.11) (1.77) 

4 2722 1455 1554 1888 
(.57) (.17) (.75) 

5 1241 2906 3432 2492 
(.35) (.37) (.62) 

6 -489 1668 2002 1849 
(.56) (.70) (2.77) 

7 2206 3751 3616 3278 
(.33) (.20) (.32) 

8 -1847 996 2492 1620 
(.67) (.47) (.88) 

9 -577 757 1071 1091 
(.94) (.40) (1.13) 

R2 - predict vs. actual .471 .136 .210 

X2 2.77 1.44 15.98 

"'t-values for the prediction errors are in parenthesis. 
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Finally, a Chi-squared test on the set of nine forecasts from each model was perfonned. 

The null hypothesis for this test is that all nine forecasts are equal to the actual values. The 

critical value for a Chi-squared with 9 degrees of freedom and ex = .05 is 3.32. Clearly, 

the model without adjustment costs, the AIM, fails this test. Thus, ignoring adjustment 

costs leads to a model whose validity must be questioned, while ignoring uncertainty leads 

to a more valid, but less accurate model. 

The remaining task is to examine the impact and long run effects of changes in 

expectations regarding the various exogenous variables entering the computation of the 

present value of profits. Because of the dimension specific nature of the problem these 

impacts are best measured as elasticities. Table 4 presents the elasticities of almond 

investment with respect to changes in the expected rates of growth of output price, the 

wage rate, the marginal tax rate, the investment tax credit, the discount rate, and the cost of 

trees--the main capital input. 1 0 Remembering that trees planted four years ago show up as 

bearing acreage in the present year, all lags start in t-4. The lags go on to t-tO because our 

expectations are based on a three year moving average of the rates of growth in output and 

factor prices. In the EPVI model the elasticity of investment with respect to Var is .088. 

Table 4. Cumulative Effects of Changes in Expectations on 
Almond Investment: Elasticities Evaluated at 1985 

Time Output Wage Marginal Investment Discount Cost of 
Period Price Rate Tax Rate Tax Credit Rate Trees 

t-4 .003 -.002 -.002 .000 -.022 -.000 
t-5 .030 -.014 -.021 .001 -.188 -.001 
t-6 .096 -.046 -.068 .003 -.606 -.002 
t-7 .195 -.094 -.137 .008 -1.224 -.004 
t-8 .303 -.146 -.213 .015 -1.901 -.007 
t-9 .370 -.179 -.261 .021 -2.325 -.008 
t-tO .402 -.194 -.284 .024 -2.527 -.009 

1 0 All ca1culations arc based on the EPVI model whose coefficients are presented above in Table 2. 
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VI. CONCLUDING REMARKS 

The model presented here implements a specification of the neoclassical notion that 

finns maximize the expected present value of profits utilizing a more specific assumption 

regarding technology than is customarily done. The model is applied to investment in 

almond orchards, an industry which is characterized by substantial price and output 

uncertainty. Under the assumptions of Leontief technology in almond production and 

prices that grow at the same rate they grew over the past three years, the expected present 

value of profit for an acre of almonds trees was computed. The model was then estimated 

using cross-section data from nine almond growing regions over the sixteen year period 

from 1970-85. The specification of the error structure recognizes the pooled time series 

cross-section nature of the data as well as the regional relations in almond production. The 

estimated model was compared to a model without uncertainty and to one without 

uncertainty and adjustment costs, both of which were estimated on the same data using the 

same technique and error structure assumptions. The model with uncertainty and 

adjustment costs showed a better fit over the historical period, had a lag structure more in 

line with a priori expectations and outperfonned the other two models in a prediction 

interval test. The predictions from the EPVI model were all within one standard error of 

the actual values and collectively passed a Chi-squared test. Comparison of the two 

alternative models shows that both adjustment costs and uncertainty are important in 

explaining investment in this industry. 
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INVESTMENT UNDER UNCERTAINTY: 

AN APPLICATION TO THE ALMOND INDUSTRY 

Empirical research on investment analysis peaked in the late sixties concurrent with 

professional interest in econometric models of aggregate demand and income 

determination. This research was motivated by the notion that investment plays a key role 

in the determination of aggregate demand. However, in the intervening years interest in 

macroeconometric models per se has diminished. Attention has focused on the implications 

for these models of various behavioral postulates, mainly rational expectations. The past 

few years have witnessed a renewed interest in investment analysis, theoretically and 

empirically, from the point of view of uncertainty, adjustment costs, and informational 

imperfections. Recent investment analysis dealing with asymmetric information includes 

Bernstein and Nadiri (1986), Fazzari and Athey (1987), Greenwald, Stiglitz and Weiss 

(1984), Myers and Majluf (1984), Sinai ann Eckstein (1983), and Stiglitz and Weiss 

(1986). Works by Abel (1983), Hartman (1976), Lucas and Prescott (1971), Pindyck 

(1982) analyse theoretical issues of investment under uncertainty with adjustment costs. 

Recent empirical studies in this vein are Abel and Blanchard (1986), Craine (1975), 

Kokkelenberg and Bischoff (1986), Meese (1980), and Pindyck and Rotemberg (1983). 

Evaluative studies of empirical investment models include Chirinko and Eisner (1983), 

Clark (1979) and Uri (1982). 

This paper contributes to this renewed i" Herest by presenting a model of investment 

behavior which emphasizes risk and uncertainty. This model is tested on a specific 

industry, almond production, which has experienced considerable investment over the past 

fifteen years. The plan of the paper is as follows. In part I, the model is developed and 

related to the existing literature, noting sew ral features which give it added realism. Next a 

brief discussion of the almond industry is ~. cesented along with reasons why this industry 

is well suited to test the model. Part III pre~' ;~nts the specification of the model, its error 
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structure, the estimation procedure, and two traditional models for comparison. Also 

included in this section are the estimates of the production function used to determine yield 

expectations. Section IV gives a more detailed specification of the model. The last section 

presents the econometric estimates of the model, a prediction interval test, and the short and 

long run impacts of changes in various exogenous instruments. 

I. INVESTMENT UNDER UNCERTAINTY 

The notion that ftrms undertake investment with an eye to future returns is certainly not 

new. The neoclassical model assumes that ftnns choose investment levels to maximize the 

present value of the ftrm. This neoclassical paradigm as implemented by Jorgenson 1, uses 

the shadow price of capital services, referred to as the user cost of capital, to deftne the 

optimal level of capital stock. The use of this shadow price implies a high degree of 

perfection in the capital markets. Also, in this fonnulation, the present price and output 

levels serve as expectations for future price and output levels. While there is nothing 

incorrect with this formulation, it does involve speciftc assumptions about capital markets, 

expectations fonnation, and the production process-in this case Cobb-Douglas. Other, 

perhaps equally plausible assumptions, would produce alternative implementations of the 

neoclassic:!l paradigm. Rather than follow that approach, a model is developed here which 

emphasizes the uncertain and risky nature of investment decisions. In doing so, we do not 

explicitly deftne an optimum level or path of capital, but rely on the notion of maximizing 

the presem value of the flnn. Investment decisions for which this model is applicable can 

be characterized by four attributes. 

First, aild perhaps most importantly, there must be substantial price and output 

uncertainty. Uncertainty, of course, characterizes decisions in agriculture as it does in many 

other sectors. Agents possess expectations with respect to output price and factor prices 

1 Literature 'm the neoclassical model is quile large. An excellent survey of the neoclassical, and other 
investmentl ,lodels, can be found in Jorgenson (1971). 
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and have knowledge of the production process. Hence, output is treated as a fully 

endogenous variable and as such does not appear in the empirical investment relation. 

Second, the investment process must be considered at a very detailed level. This is 

necessary so that the present value of future profits can be identified and computed. The 

notion of highly detailed investment demand is contrary to many previous studies which 

have as their main purpose the detennination of large portions of aggregate demand. The 

purpose here is to test a specific investment theory and not to provide an integral part of a 

macroeconometric model. Also, this level of detail reduces aggregation problems for the 

empirical work. Given these conditions, it is possible to compute the expected value of a 

marginal unit of investment ( e.g., a square foot of commercial office space, a particular 

new machine, an acre of farmland, etc.}.2 Third, although not a strict requirement, the 

computational burden is eased if the production process under consideration is 

characterized by near zero elasticities of substitution between factors. However, if the 

structure of production is known or is capable of being estimated, then, in principle, non­

zero elasticities of substitution should present no problem. Fourth, the investment decision 

under consideration should be capable of being undertaken in fairly small units by many 

potentially competing firms. This makes it possible to compute the marginal efficiency of 

capital. 

The model to be tested here assumes that the amount of investment undertaken is a 

function of the expected utility of profits. The expected utility of profits is represented by 

expected profitability plus a risk factor. Expected profitability is the expectation of the 

present value of future revenues minus costs, including investment costs and tax benefits, 

discounted over the anticipated (finite) life of the asset. The measure to represent risk is the 

variance of the expected profitability which is based on the historical experience for that 
-.. 

particular asset. It should be noted that our model says that the level of investment in a 

2 It is of course possible LO compute it other ways. See Abel and Blanchard (1986) for example. 
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( particular asset or capital stock is a function of the expected utility of profit from a unit of 

investment. lbis implies that as the expected utility becomes larger, more investors will be 

drawn into the industry and/or those investing will invest larger amounts. lbis can lead to 

some questions as to the existence of a finite solution to the investment problem. We refer 

to this as the problem of closure and discuss it more fully below in reference to the specific 

industry we test. 

The present value of expected profits is given by 

(1) 7t=(8+o-t) 

where 8 is the present value of the expected revenue derived minus the expected variable 

costs of producing it including the present value of all expected expenditures incurred for 

the investment project itself, 0 is the present value of expected tax savings due to 

accelerated depreciation and the investment tax credit, and t is the expected opportunity cost 

of any asset acquired to enable the investment to proceed minus the discounted expected 

capital gains from the sale of the asset at the end of the horizon. Ignoring risk for the 

moment, additions to capital stock occur if 7t > O. Reductions, or disinvestment, occur if 7t 

< O. It is important to note this distinction since it implies that replacement investment per 

se does not occur. Firms replace capital only if it is profitable to do so. They also disinvest, 

or scrap capital, if that particular asset is no longer profitable. When the asset finally wears 

out, it is 'replaced' only if it meets the same criterion as a new investment. Hence, we 

assume a 'one hoss shay' theory of depreciation which is quite accurate for almond 

production. 

Capital stock at any moment of time is given by 

(2) kt = kt-l + at - St 

where k is the stock of capital in physical units, a is the grms additions to stock and s is the 

level of scrappings. As long as technology is Leontief and unchanging over time, the 

vintage of the capital does not matter and it is possible to aggregate the various vintages in 

the manner given by (2) in physical terms. From the above discussion, 
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( (3) at = f{ 7t, var(7t) } 

and 

(4) St = g{ 7t, var(7t) } 

where var(7t) is the variance of expected profits and it is understood that the computation of 

7t in (3) may be substantially different than the computation of 7t in (4) mainly because of 

differing time horizons, but also due to other factors. It should be noted that CJa/CJ7t > 0, but 

that CJa/CJvar(7t) is ambiguous since we assume that investor can be either risk averse or risk 

inclined. 

Given the above, if it pays to invest in one unit of the asset, what stops the investor 

from investing in an infinite (or, at least, very large) number of units? Two factors will give 

the system closure. First, although the investor may view input supply as perfectly elastic, 

it is not. The prices of inputs will eventually rise, and, just as important, input supply may 

be limited in crucial cases. The availability of inputs places a limit on the system that 

restricts potential investment. For example, credit may be rationed and/or cash flow limited. 

The possibility of credit rationing has been identified theoretically in the context of 

informational asymmetries and has a long history in empirical work on investment, usually 

under the name of cash flow. We do not investigate credit rationing in this study, but 

reserve it for future work. The second factor that restricts potential investment to finite 

amounts is risk. For risk averse investors, any amount of risk is an inhibiting factor, even 

though they expect to earn a profit. Hence, as initially recognized by Kalecki (1937), risk 

will be a factor causing the marginal efficiency of investment to fall. In practice, although 

we compute 7t for a smalJ unit of investment, it is an average 7t in the sense that it is not 

affected by risk or any of the factors causing it to fall. This occurs mainly for two reasons. 

First, we do not conduct the analysis at the level of the individual almond grower and 

therefore do not have knowledge of the limitations, in terms of say increasingly 

unsatisfactory land, whic"il he faces. These factors would result in a downward sloping 

schedule of 7t as a functic:n of the level of investment. Second, and more importantly from 
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an estimation point of view. year to year variations in 7t are large and as such are the main 

force determining investment. 

The above theoretical development suggests a model of investment driven by the 

expected marginal present value (EMPV) of the investment. When the decisions of many 

individual investors are aggregated, constraints on inputs and credit availability result in 

finite investments that should be proportional to the magnitude of the EMPV. Because the 

model is for actual investment, not desired capital stock or desired investment, there is no 

need for any sort of partial adjustment process. There is, though, every reason to assume 

that investment decisions are based on past EMPV's as well as the current EMPV. For this 

reason, lagged values of the EMPV of almonds were included in the investment equation. 

In effect, 7t is represented by a distributed lag in EMPV. Lastly, because risk is believed to 

affect investment decisions, a measure of risk is included in the specification. Following a 

common formulation from the optimization literature (c.f. Pratt (1964) and Paris (1979»). 

the variance of the EMPV is used as the measure of risk. 

While the variance of expected profits will offer a reasonable measure of risk, it should 

be cautioned that the coefficient for this variable cannot be interpreted as a risk aversion 

coefficient in the normal Pratt-Arrow sense. This is due to the multi-period nature of the 

investment decision. With serially connected payoffs over a fmite asset life, conventional 

results about attitudes toward risk do not necessarily apply) It is less clear what the sign 

of the coefficient tells about the shape of the individual's utility function or his attitude 

toward risk than when confronted with a one-period independent uncertain decision. It is 

safe to conclude that a positive coefficient on the variance of the EMPV implies a greater 

propensity to invest in almonds when a larger degree of year-to-year variation in returns is 

expected and that a negative coefficient implies the opposite. ,Therefore, it may be 

conjectured that a positive (negative) coefficient does imply some type of risk inclination 

3 See Newberry and Stiglitz (1981), chapters 6 & 7. 
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( (aversion), but this may only be for multi~period decisions where a loss in one year may 

appear to make large profits the next year more likely. 

II. INVESTMENT IN ALMOND ORCHARDS 

The almond industry was selected as a test for this approach for several reasons. First, 

it is possible to obtain detailed microdata on costs, plantings, yields and prices for this 

industry. Second, there has been a high level of investment in almond orchards over the 

past twenty years. Third, the technology of growing and harvesting almonds has changed 

little over this period, obviating the need to deal with technological change. Fourth, 

production of almonds is characterized by near Leontief technology thus reducing the scope 

of relative price considerations and facilitating the computation of present value. Fifth, the 

industry is reasonably competitive and is not dominated on the supply side by any single 

large producer. Sixth, returns in the almond industry are characterized by considerable 

variation. Hence, there is substantial uncertainty regarding future levels of profits. This 

variation occurs because of weather induced fluctuations in yields which are as great as 100 

percent from year to year. Also, a large portion of the crop is exported. Thi~re is substantial 

variation in export demand due to fluctuations in competing supplies and changes in 

exchange rates. Seventh, the model presented here is highly dissaggregated: nine producing 

regions are identified. Output and the capital stock are homogeneous and undifferentiated. 

As a result aggregation problems are hopefully minimized. 

As is the case for many tree crops, most soils are suitable for almonds, the critical factor 

being the availability of water. Once the seedlings are planted, four years are required 

before trees reach sufficient maturity to yield a harvestable crop. Hence, it is possible to 

separate the delivery lag from the expectationallag, a problem which Abel and Blanchard 

(1986) noted for the neoclassical model. The main costs incurred during this period, in 

addition to acquiring the land, are the cost of the seedlings, installation of an irrigation 

system, planting, cultivation, pruning, fertilization and management. Thes,! costs, 
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including the opportunity costs of capital expended, are currently about $7000 per acre on a 

present value basis. There are slightly over 400,000 acres in almonds in California (the 

only state which raises them) for a capital stock value of almost three billion dollars. 

A Federal marketing order exists for almonds and is used to provide grower funds for 

research, mainly on disease control in the trees. Large scale almond production is a 

relatively new phenomena in this country. As a result there are very few orchards 

approaching twenty years of age, the typical life of an almond tree. Hence, removals over 

the period under consideration, 1970-1985, were minimal.4 In view of the above 

discussion, it is possible to write (2) as 

(5) kt = kt-l + nt 

where nt is net additions (gross additions less removals). Hence, net additions are the 

investment variable to be explained. As indicated above, the geometric depreciation theory 

where removals are a function of kt-l is not realistic for the almond industry where most 

trees live twenty years. As a result kt-l does not appear in the investment demand relation. 

The Almond Board provides funds for the California Crop and Livestock Reporting 

Service to do a survey of the bearing acreage. Since net additions are estimated as the 

change in bearing acreage, it is not possible to test that portion of our theory which says 

that removals as well as gross additions are determined by the utility of expected profits. 

However, as we note above, removals over this period have been negligible. 

III. ECONOMETRIC SPECIFICATION AND ESTIMATION 

With the above development in mind the investment model can now be specified as, 

(6) N1it = Go + G(L) EMPVit-4 + B6 V ARit-4 + Wit 

where 

4 According to estimates made by Bushnell and King (1986), removals are currently about one percent of 
bearing acreage. We view this to be mimi mal in view of the fact that there are more removals presently 
than earlier in the study period. 
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NIit = (Ait - Ait-I) I Ait-I 

Ait - bearing acerage of almonds in the ith region in time period 1, 

EMPVit = the expected marginal present value of profit in region i (defmed 

below) in year t 

L- distributed lag operator 

VARit-4 = variance of the EMPV (also defined below) 

Wit = stochastic error term for region i in time period 1. 

Recognizing that it takes four full years for almond trees to bear, we specify the model as 

(7) NIit = Bo + BI *EMPVit-4 + B2*EMPVit-5 + ... +BS*EMPVit-B + B6*VARit-4 + Wit 

where 

(8) EMPVit = (PVit + Dit - Lit) I ft. 

Following Sims (1972) the model is estimated with no constraints on the shape of the lag 

distribt1tion. In a manner similar to that used by Clark (1979), investment is divided by 

capital stock lagged so that both left and right hand side variables are measured on a per 

acre basis, i.e. investment per acre and profit per acre. Only the left hand side of (7) is 

divided by capital stock, thus avoiding problems of spurious correlation fust pointed out by 

Kuh and Meyer (1955). 

Assumptions regarding the expectations of future prices and costs are discussed below. 

Technology is assumed constant once the trees are in place. Expected yield (output per 

acre) is based on an estimated production function also discussed below. PV is the 

expected present value of cash revenues and costs on one acre of almonds over a twenty 

year horimn viewed from time period t. Costs include investment expenditures as well as 

production costs. D is the expected present value of tax savings due to accelerated 

depreciation and the investment tax credit. L is the current price of irrigated farmland in 

region i and is used as a measure of the opportunity cost of the land. All the present values 

are discounted by the current Federal Land Bank long term interest rate. At any point in 

time over the sample period the level of investment will be a function of the level of EMPV 
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which is given in nominal terms, However, in order to use EMPV over time in regression 

analysis, it must be converted to constant dollars for purposes of comparison. The deflator 

used for this purpose is f, prices paid by farmers. This index is composed of prices of 

various farm inputs, Since profits are often re-invested by farmers, this is the appropriate 

index. As a practical matter, it is highly correlated with the CPI and/or the GNP deflator. A 

more precise explanation of how PV and D were computed and the data sources is given 

below in Section IV. VARit-4 is computed via the standard sampling variance formula 

using the eight most recent EMPV's. 

For purposes of estimation, California was classified into nine growing regions. Seven 

of these regions correspond to counties while the remaining two are groups of counties, 

one in the north and one in the south, whose involvement in almonds is small. The 

following assumptions were made about the error term, Wit, 

(9a) E(wiV = 0 

(9b) E(witwks) = 0, for all t not equal to s 

(9c) E(wit2) = (iii, i = 1, ... ,9 

(9d) E(witWkt) = {iik, i,k = 1, ... ,9, i not equal to k. 

Further spatial and temporal error covariance assumptions were made about the {iik. First, 

the assumption was made that there is no autocorrelation between the error terms, even 

within a region. While this assumption may seem simplistic in a model with lagged 

variables. it should be noted that all lagged variables are exogenous. Also, a sample 

autocorrelation coefficient was calculated (r=.232) and was not statistically significant. As a 

further test, the model was estimated using the appropriate GLS autocorrelation 

transformation and it provided no improvement over the model without the correction. 

Hence, there was no autocorrelation correction in the final version of the model. The errors 

are, however, assumed to have particular non-zero spatial covariances. The nine regions 

which our data pertain to are grouped into three super-regions (1,8; 2,3,4,9; 5,6,7; see 

Table 1 for the numbering key) corresponding to the Sacramento Valley, Northern San 
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Joaquin Valley, and Southern San Joaquin Valley, respectively. On this basis the spatial 

error assumptions are: each region has its own distinct error variance given by (9c), any 

two regions in the same super-region have the same error covariance and any two regions 

in two different super-regions have the same error covariance. For example, this means that 

023 = 024 and 025 = 037. These covariance assumptions are based on the regional nature of 

the data set. It certainly seems plausible that if almonds are profitable in one county, some 

of the investment thereby encouraged may take place in another county. Therefore, 

covariances between regions should be expected a priori, and would likely depend on how 

close two regions are to each other. Such reasoning leads to covariance assumptions of the 

type made in (9). 

Applying the proposed error structure to the model, estimates of the parameters in 

the error variance-covariance matrix, Q= E(ww'), were obtained from an OLS regression 

of the model. The OLS residuals were used to estimate each 0ik parameter, being careful 

to correct for the fact that the regional subsets of the residuals do not have zero means. The 

estimate of n obtained by this method is consistent due to the consistency of the OLS 

residuals. Lastly, it should be noted that n = 1: ® I, where 1: is a 9x9 matrix of the 0ik 

defined above, I is an 8x8 identity matrix and ® is the Kronecker delta product. Such an 

error structure, based here on the regional nature of the problem, is equivalent to the error 

structure of Zellner's Seemingly Unrelated Regression (SUR). Zellner (1962) showed that 

such a procedure is not only consistent, but also efficient for estimating systems of 

equations such as these. Here the "system" is simply the nine equations, each representing 

one county or county group. Although the variables in each of the equations are identical, 

the actual values of those variables differ across equations because costs, technology, and 

prices vary by county. Hence, there is a gain in efficiency captured by exploiting the 

familiar SUR error structure. 

What is less well known is that estimates yielded by Zellner's SUR are also unbiased. 

This fact can be important in the small to medium sized ['!lIl1ples which are often used in 
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applied work. Kakwani (1967) showed that as long as the disturbance term has a 

continuous symmetric probability density function the Zellner estimators are unbiased. This 

result is based on the fact that 1: is then an even function of the disturbance term, w. 

Therefore, n = 1: ® I is also an even function of w. This fact can be used to show that 

the estimates obtained by perfonning SUR are unbiased both in fmite and infmite samples. 

We can extend this result to the model used here even though the S's do not vary across the 

nine regions. The final estimation of the model was then performed using GLS, with the 

estimate of n. In addition to the EMPV model, this estimation procedure was implemented 

on two alternative models. The same data base was used on all three models. The 

alternative models tested were the neoclassical investment model (NJM) and the accelerator 

investment model (AIM). 

Estimation of Expected Yield. One of the most important components of the 

EMPV is the yield. This requires the estimation of a production function for almonds. As 

indicated earlier, there is substantial variation in almond yields, due mainly to weather, but 

also due to the fact that almonds are an alternate bearing crop. Alternate bearing means that 

the crop alternates yearly between relatively heavy and relatively light crops. This 

phenomena is difficult to observe due to the much larger weather induced variations. 

However, any expected profit model must take these variations into account and provide an 

accurate forecast of expected yield for the present value computation. Since yield is total 

output divided by the number of acres, estimation of the yield function is equivalent to 

estimating the production function. 

The production function for almonds was estimated using three variables: bearing 

acreage, rainfall, and a dummy variable for alternate years. Bearing acreage is the number 

of acres of almond tree:> four years of age and older. Once in place, the input requirements 

for cultivation, harvesting, pruning, etc. are virtually fixed. Hence, the usual economic 

inputs e.g. labor, mated.als, do not appear in the production function. The costs of these 

inputs do, however, appear in the present value computations discussed below. Rainfall 
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was included because the bloom period for almonds falls during California's rainy season 

(February and March). If it rains too much during the bloom period the bees cannot 

pollinate the trees well and a small crop is the result. A dummy was included to account for 

the alternate bearing phenomena 

The model was estimated as a pooled cross-section time series model. The relation 

specifies that production varies by region (due to climate, soil type, water, etc.), by 

alternate years, and with the rainfall in that region. In functional notation, 

(10) production = f(bearing acreage, region, alternate year, rainfall). 

Dummy variables were employed for eight of the nine regions with Butte County being the 

base region. A dummy variable that took the values of 0 in even years and 1 in odd years 

was used to model the alternate bearing phenomena. The variable for rainfall was inches of 

rainfall in February squared. The production model can be written as, 

(1) Pit = Bo + BIAit + AitIBkRkt + 1tJAitFRit + AitFRitL1tkRkt + J.L}AitDit + Vit 

where 

Pit = tons of almond kernels produced in region i, in year t 

Ait = bearing acreage, in thousands of acres for region i, in year t 

Rkt = dummy variable equal to 1 if the kth region, 0 otherwise, k=2, 9 

Dit = dummy for alternate bearing, equal to 1 in odd years, 0 in even years 

FRit = inches of rainfall in February, squared5 , in region i, in year t 

Vit = stochastic error term. 

The production relation was estimated by generalized least squares (GLS). The 

assumptions about the vit were: 

(l2a) E(vit) = 0 

(12b) for all s not equal to ~. 

5 Both rainfall and rainfall squared were tried with the lauer producing bener results. The squared effect was 
also found superior in other weather related studies of almond production by the authors. The month of 
Februaury was selected because it is the bloom period for almonds throught the state. Experimentaiton with 
later bloom periods for northern counties did not improve the results. 
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(12c) 

(12d) 

E(vit2) = CPii, 

E(vitVkt) = CPik, 

i = 1 •...• 9 

for all i.k = 1 •...• 9 

This gives an error structure where E(vv') = cI> ® I where I is a 16x16 identity matrix, 

cI> a matrix of the CPik. The cj)ik were estimated from the residuals of the ordinary least 

squares (OLS) regression of the above production model. Once again. reference to 

Kakwani's proof yields estimates which are unbiased. 

The data used to perform the estimation were county level data on almond acreage and 

production in California from 1970 to 1985. taken from the relevant County Agricultural 

Commissioner's Reports. The data on rainfall was collected from the National 

Oceanographic and Atmospheric Administration published reports. February rainfall was 

chosen as most representative of the bloom period. Within each county a weather station 

nearest the center of the almond growing area was chosen. The data were organized into 

nine regions: seven counties (Butte. Fresno. Kern. Madera. Merced. San Joaquin. and 

Stanislaus) and two groups of counties that grow fewer almonds. North (Colusa, Contra 

Costa, Glenn, Solano, Sutter, Tehama, Yolo, and Yuba Counties) and South (Kings, San 

Luis Obispo, and Tulare Counties). Hence, there are a total of 144 observations used to 

estimate the production function. The estimates of the production function are given in 

Table 1. 

IV. ESTIMATION OF THE INVESTMENT MODELS 

In this section we present more details of the EMPV investment model as well as a brief 

development of the alternative models tested: a) neoclassical model with Cobb-Douglas 

technology: and, b) neoclassical model with Leontieftechnology, or, as it is commonly 

called-the accelerator. All three specifications are estimated with the same data by the GLS 

regression technique using an error structure which is equivalent to SUR as outlined above. 

Table 1. Generalized Least Squares Estimates 
of Almond Production Function 
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Symbol Variable Coefficient t-ratio 

60 Intercept -.402xl()4 5.84 
61 Bearing acreage (A) .780 17.90 
1t1 February rainfall x A -.003 3.64 
JlI Alternate bearing dummy x A -.076 4.13 

Acreage x Regional Dummies 

62 A x Fresno .076 1.71 
63 AxKern .036 .89 
64 A x Madera .075 1.65 
65 A x Merced .023 .34 
66 A x San Joaquin .090 1.58 
67 A x Stanislaus .067 2.56 
68 A x North Region -.257 8.37 
69 A x South Region -.083 1.72 

Acreage x February Rainfall x Regional Dummies 

1t2 A x FR x Fresno -.005 1.29 
1t3 A x FR x Kern -.011 3.94 
1t4 A x FR x Madera -.011 2.60 
1t5 A x FR x Merced -.006 1.21 
1t6 A x FR x San Joaquin -.015 2.82 
1t7 A x FR x Stanislaus -.010 4.05 
1t8 A x FR x North Region .0004 .51 
1t9 A x FR x South Region .0002 .13 

R2 = .927 R2 = .916 s = .984 

The EMPV Model. All present value computations in the model were done over a 

twenty year time horizon,6 which is the life of a typical almond tree. Hence, 

19 

(13) EMPV t = {L, (PjtYjt - Cjtljt + djt)(1-mjt)(1 + rjttj 11ft 
j=O 

where 
EMPVt - expected marginal present value in year t, t=1972-1985 

Pjt - the expectation in year t for almond price in years t + j, 

6 While we assume a twenty year planning horizon, almond trees can, of course, be left in the ground 
longer. Yields begin to decline substantially after twenty years due mainly to the impact of shaking from 
the mechanical harvesters. Also, the effect on )resent value of an additional year past twenty is quite small. 
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Yjt - the expectation in year t for almond yield in years t + j, 

Cjt - the expectation in year t of a vector of input prices in years t + j, 

ljt - the expectation in year t of a vector of input coefficients in year t + j, 

djt - tax savings due to depreciation and investment tax credit in year t + j, 

mjt - the expectation in year t of the marginal tax rate in period t + j, 

rjt - the expectation in year t of the discount rate in year t + j, 

ft - prices paid by farmers in year t. 

The EMPV's were computed for each year, 1970-85, for each of the nine regions. The 

expectations assumption used was the following 

(14) Pjt = (1 +gpt~ POt j=0, ... ,19 

where gpt is the rate of growth of expected prices in period t. The estimate of gpt is based 

on the unweighted average of the past three years rates of growth of prices. Hence, prices 

are assumed to grow at the same rate as they have averaged over the past three years. 

Prices, and their associated gpt'S, are different for each of the nine regions. We have 

deleted regional subscripts here in order to avoid confusion. The same procedure was used 

to estimate the vector of expected input prices, the Cjt's. They also vary by region and are 

composed of prices for herbicides, pesticides, skilled and unskilled labor, trees, planting 

labor, water, fertilizer, bees for pollination, tractor, harvesting labor and equipment, 

management, and miscellaneous. As a result of the assumption of Leontief technology, the 

vector of Ijt'S which pertain to the variable inputs, do not change over time, but do vary by 

region and age of orchard. The values of the expected yield, also by region, are obtained 

using the production function estimated above. In order to estimate these yields, it was 

assumed that rainfall in the future would be at the historical mean level. The data used for 

the discount rate is the Federal Land Bank long tenn rate and is the same for all regions and 

is expected to remain the same in all future periods. Depreciation, d, was estimated by 

computing the accelerated depreciation (sum-of-the-years' digits) times the marginal tax 

rate. This category also includes the value of the investment tax credit on the qualifying 
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expenditures. The marginal tax rate was computed by taking the average of the marginal tax 

rates on incomes (in constant 1965 dollars) of 20 and 80 thousand dollars. These two 

income levels represented average farmer and professional investor income levels. 

Depreciation varies by region since input costs vary by region. 

The EMPV model presented above clearly has elements of rational expectations theory. 

The use of the production model for yield expectations is consistent with the rational 

expectations hypothesis. In order to fully implement that approach it would be necessary to 

estimate ARIMA type models for each of the input prices and the output price. While this 

would not be an insurmountable task, the short annual time series available for such an 

estimation makes that approach unappealing. Hence, we have chosen to use the moving 

average growth rate assumption although the errors from this method may be 

autocorrelated. Some, limited, experimentation showed that the price expectations 

computed by the moving average method were quite close to those computed by ARIMA 

models. We also note that the focus of this paper is not to test the rational expectations 

hypothesis? The model given here also has similarities to Tobin's q-theory of 

investment. If prices were available over time on almond orchards, it would be possible to 

compare the replacement costs, which are given above, with these prices to determine if 

investment should take place.8 

The Neoclassical Investment Model. The starting point for the neoclassical 

investment model used here is a Cobb-Douglas production function relating the output of 

almonds (X) to the capital stock of almond trees (K) and other inputs. Under the 

assumption of multi period optimization the desired level of capital stock is given by 

(15) '" K =pXiq 

where p is the price of output and q is the user cost of capital here defined as 

7 For a test of the rational expectations hypothesis applied to agriculture see Goodwin and Sheffrin (1982). 
8 For examples of the q-theory approach in applied studies see Engel and Foley (1976). Summers (1981), 
and von Furstenberg (1977). 
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(16) q=(d+r)z-m 

where d is the depreciation rate on the investment good, r is the rate of interest, z is the 

price of the capital good, and m is the present value of that years' tax savings from 

depreciation. Following the usual transformation the model to be estimated is 

(17) NIit = 80 + 8(L) AK* it-4 + Wit. 

The neoclassical investment model usually contains a term in Kt-l. However, as noted 

above there has been virtually no replacement demand over this period. Hence, lagged 

capital stock is omitted.9 The user cost of capital was computed by adding together the 

cost of all of the items used to bring the trees to maturity. This includes the cost of the trees 

themselves, the irrigation system, cultivation, management and all other costs for the first 

four years. This total was z, the price of the capital good. The depreciation method used 

was sum-of-the-years' digits and the Federal Land Bank: long term rate was used for r. 

Again, the lag distribution was estimated in an unconstrained manner. 

The Accelerator Investment Model. The accelerator model can be considered as 

a special case of the neoclassical investment model. H instead of the Cobb-Douglas 

production function, Leontief technology is assumed, then the input demand for the capital 

services will be 

(18) 

Again, with the usual adjustment assumptions, 

(19) Nit = Bo + 8(L) ~it-4 + Wit. 

The accelerator model can, of course, be derived from alternative considerations. 10 

v. THE EMPIRICAL RESULTS 

9 The model given by (17) was estimated with K1-I included and it was no1 significant 

10 Both the accelerator and the neoclac;sical model were estimated in the same manner as the EMPV model, 
i.e. (A - Ai1- I> / Ait-l as the dependent variable. 
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This section presents the Generalized Least Squares estimates for the three models 

presented above. It also gives the results of the prediction interval test and the elasticities 

for the exogenous variables. The model estimates are given in Table 2. The EMPV model 

produces a stable lag structure, all coefficients are significant with the exception of Xt-4. 

The coefficient on Var is significant and positive indicating that almond growers are risk 

inclined. This situation would seem to be consistent with a willingness to undertake risky 

investments. Omission of the Var variable did not greatly affect the shape of the lag 

structure or the significance of the individual coefficients. 

The first R2 in Table 2 is for the Generalized Least Squares residuals and is given by 

(20) R2:GLS = w'n-1w/y'.1-1y 

where n is as before, .1 = ~n ® AT, ~n is as before and AT = IT - VI' ii', i is the 

units vector, n is the number of regions, and T is the number of time periods. The R2 for 

the untransfonned (UT) data is therefore, 

(21) R2:UT == w'Aw/y'Ay 

where A = InT - linT ii". Both of the R2 in the table are adjusted for degrees of freedom 

by the standard method. The EMPV model has the best fit by either R2 criterion. In order to 

determine the effect of including the variance tenn on the goodness of fit, the NIM and 

AIM were estimated using both the Var measure from the EMPV model and a variance 

computed from the appropriate X's for those models. None of the four models estimated in 

this manner were an improvement in tenns of an increased adjusted R2. The estimates in 

tenns of the lag structure were worse for both NIM and AIM with the variance tenns 

included. The lag structure for the neoclassical model is consistent with prior expectations 

and a little more delayed than the one for the EMPV model. The lag structure for the 

accelerator model is sawtoothed and stands in strong contrast to the reasonably smooth lags 

found for the EMPV and NIM models. 
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Table 2. Generalized Least-Squares Estimates of the 
EMPV, NIM, and AIM Models 

Variable EMPV NIM AIM 

Intercept .681E-01 .330E-Ol .038E-01 
(11.22)* (5.82) (4.54) 

.. X t-4 .497E-06 -.627E-08 . 149E-05 
(0.68) (0.17) (1.58) 

Xt-5 .321E-05 .587E-07 -.208E-06 
(4.86) (1.54) (0.19) 

X t-6 .567E-05 .203E-06 . 174E-05 
(7.40) (5.32) (1.42) 

Xt-7 .499E-05 .209E-06 -.502E-07 
(6.81) (4.86) (0.03) 

Xt-8 .452E-05 .091E-08 .552E-05 
(5.44) (2.14) (2.67) 

Var .117E-08 
(3.82) 

R2:GLS .664 .398 .081 

R2:UT .386 .261 .025 

* The numbers in parenthesis are the t-ratios. 
** The X's represent the independent variables for 

each particular model. Hence, for the EMPV 
model the X's are given by (13), for NIM by 
(15) and (17), and for AIM by (19). 

Out of sample forecasts were made to test the forecasting ability and the empirical 

consistency of models. If most of the forecasts fall within one standard deviation of the 

actual values, then a given model can be deemed to be empirically consistent, even if its 

forecasts are not particularly accurate. If out of sample forecasts routinely exceed one 

standard deviation from the actual values, then the validity of the model as a forecasting 

tool must be questioned. Also, the calculated confidence levels that are placed on the model 

and its parameters must be re-examined. ll 

11 For an earlier application of this prediction test to investment models see Clark (1979). 
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The predictions were made for each region for the year 1986, giving nine forecasts per 

model. The results of these predictions are presented in Table 3. Below each prediction is 

the t-value for the forecast error (Le. how many standard deviations the forecast fell from 

the actual value). For a prediction intelVal test done in this manner, as Iowa t-value as 

possible is desired. The covariance matrix of the forecasts for a given model is calculated 

as: 

(21) V = L + R(X'Q-IX)-lR'. 

Here, Q is the error covariance matrix for the given model, and remembering the error 

structure employed, Q = L ® I, X is the in sample matrix of data on the regressors, and 

R is the out of sample matrix of data on the regressors. 12 The standard deviation of a 

particular forecast is simply the square root of the appropriate diagonal element. For 

example, the t-value for the forecast error of the prediction for region 3 is 

(22) t3 = (a - Rfib/(V33)1I2, 

where a is the vector of actual values, Rfi is the vector of predictions, and subscripts refer 

to rows and columns of vectors and matrices. 

As can be seen from Table 3, there is a definite difference in how close the forecasts lie 

to the actual values in tenns of standard deviations. For the EMPV model every forecast is 

within one standard deviation of the actual value, while the two alternative models both 

show a number of forecasts with errors that fall farther than one standard deviation from 

the actual value. The reader has surely noticed that the standard deviation varies not only 

with the model chosen, but also with the actual forecast (i.e., region). While it is clear that 

a model with poor explanatory power might easily show itself to be empirically consistent 

by such a test simply by having a large forecast variance, this is not why the EMPV model 

perfonns better than the other models here. It should be noted that the EMPV model has 

the highest R2 of the four models. Further, it should be noted that the covariance matrix of 

12 See Johnslon (1986). 
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the coefficients appears in the fonnula for the covariance matrix of the forecasts. It will be 

remembered that the EMPV model also had the best overall set of t-statistics for the 

regression coefficients. which implies a small covariance matrix in relation to the fi'S used 

to calculate the forecasts. With these two facts in mind. it seems safe to conclude in light of 

the results of the prediction tests perfonned that the EMPV model has the greatest empirical 

consistency in tenns of out of sample validation. 

Table 3. Results of Prediction Interval Test 

Region Actual EMPV AIM NIM 

1 867 1788 1841 1502 
(.44)* (.60) (.72) 

2 -471 948 1937 1975 
(.57) (1.31) ( 1.66) 

3 1980 3781 9244 9055 
(.23) ( 1.77) (2.08) 

4 2722 1455 1888 1575 
(.57) (.75) (.99) 

5 1241 2906 2492 3596 
(.35) (.62) (1.00) 

6 -489 1668 1849 1416 
(.56) (2.77) (l.53) 

7 2206 3751 3278 4314 
(.33) (.32) (.78) 

8 -1847 996 1620 1041 
(.67) (.88) (1.00) 

9 -577 757 1091 973 
(.94) (1.13) (.69) 

R2 - predict vs. actual .471 .210 .293 

*t-values for the prediction errors are in parenthesis. 

The remaining task is to examine the impact and long run effects of changes in 

expectations regarding the various exogenous variables entering the computation of the 
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present value of profits. Because of the dimension specific nature of the problem these 

impacts are best measured as elasticities. Table 4 presents the elasticities of almond 

investment with respect to changes in the expected rates of growth of output price, the 

wage rate, the marginal tax rate, the investment tax credit, the discount rate, and the cost of 

trees - the main capital input.13 Remembering that trees planted four years ago show up 

as bearing acreage in the present year, all lags start in t-4. The lags go on to t-tO because 

our expectations are based on a three year moving average of the rates of growth in output 

and factor prices. In the EMPV model the elasticity of investment with respect to Var is 

.088. 

Table 4. CumulativeEffects of Changes in Expectations on 
Almond Investment: Elasticities Evaluated at 1985 

Time Output Wage Marginal Investment Discount Cost of 
Period Price Rate Tax Rate Tax Credit Rate Trees 

t-4 .003 -.002 -.002 .000 -.022 -.000 
t-5 .030 -.014 -.021 .001 -.188 -.001 
t-6 .096 -.046 -.068 .003 -.606 -.002 
t-7 .195 -.094 -.137 .008 -1.224 -.004 
t-8 .303 -.146 -.213 .015 -1.901 -.007 
t-9 .370 -.179 -.261 .021 -2.325 -.008 
t-tO .402 -.194 -.284 .024 -2.527 -.009 

VI. CONCLUDING REMARKS 

The model presented here implements an alternative specification of the neoclassical 

notion that firms maximize the expected utility of the present value of profits. The expected 

utility of profits is represented by the expected present value of profits and the variance of 

profits. The model is then applied to investment in almond orchards, an industry which is 

characterized by substantial price and output uncertainty. Under the assumptions of 

Leontief technology in almond production and of future output price and factor prices that 

13 All calculations are based on the EMPV model whose coefficients are presented above in Table 2. 
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grow at the same rate they grew over the past three years, it is possible to compute the 

present value of profit for an acre of almonds trees. The model was then estimated by 

Generalized Least Squares using cross-section data from nine almond growing regions 

over the sixteen year period from 1970-85. The specification of the error structure 

recognizes the pooled time series cross-section nature of the data as well as the regional 

relations in almond production. The estimated model was compared with traditional 

neoclassical and accelerator investment models which were estimated on the same data 

using the same technique and error structure assumptions. The EMPV model showed a 

better fit over the historical period, had a lag structure more in line with a priori 

expectations and also outperformed the other two models in an out of sample prediction 

interval test. All predictions from the EMPV model were within one standard error of the 

sample prediction standard error. 
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REGIONAL AND WEATHER RELATED 

V ARIATIONS IN ALMOND YIELDS 

Jeffrey Dorfman and Dale Heien 

Almond production is one of agriculture's best examples of the impact of weather on 

yields. Year to year changes in yields, due mainly to rainfall, can be as great as one 

hundred percent. As a result, variations in yield are translated directly into variations in 

production, which is clearly demonstrated in Figure 1. Because a significant proportion of 

the almond crop is exported it is important to know as early as possible what the total crop 

will be. This is useful mainly for pricing considerations and for making an optimal 

allocation between domestic and foreign sales. 

Figure 1. Graph of Almond Yields and Production 

In a previous paper (California Agriculture, March-April 1987) we reported on a 

technique to improve the State's objective almond survey which is made in May of each 

year. The forecast made as a result of the State's survey is quite accurate, but it does not 

come out until June. Although this is still two months in advance of the time harvest 

begins, it is desirable to have an earlier forecast for marketing planning purposes. The state 

does a small survey in February, which is not as accurate as the later one. In this paper we 

report on results of trying to use econometric methods to forecast the almond crop using 

data which is commonly available at the same time the first survey is made. For forecasting 

purposes, the model turned out to be unsatisfactory. There is simply too much random 

variation to use statistical techniques to forecast crop size so early in the growing season 

with the reliability required for economic decisions. However, we did uncover some 

interesting results with regard to the effects of rainfall and other factors on yield. 
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As mentioned above, the production of almonds is greatly influenced by rainfall; in 

particular, rainfall in the month of February. The bloom period for almonds falls during 

California's rainy season (February and March). Almond trees cannot self-pollinate, but 

must be pollinated by another variety of almond tree. For this reason ahnond orchards 

always contain at least two varieties of trees, planted either in alternating rows or two rows 

of one and one row of the other. Because cross-pollination is necessary, bees are vital to a 

good crop. If it rains too much during the bloom period the bees do not pollinate the trees 

well enough and a small crop (as in 1986) is the result. 

In order to measure the effect of rainfall and the alternate bearing phenomena we 

estimated a statistical production function for almonds. A production function measures the 

relationship between output and inputs. The inputs are represented here by acreage, 

rainfall, and a variable for the alternate bearing pattern of ahnond trees. Alternate bearing 

means that the crop alternates yearly between relatively light and relatively heavy yields due 

to physiological factors, and almonds are considered moderately alternate bearing. We 

began with a relation that indicates that yields vary by region, by alternate years, and with 

the rainfall in that region. Since identically, production equals yield times bearing acreage, 

the production relationship can be estimated as yield times bearing acreage. This was then 

translated into a relation which specified production as a function of bearing acreage times 

regional effects, bearing acreage times the rainfall effect, and bearing acreage times the 

alternate yield effect. Bearing acreage is the number of acres of almond trees four years of 

age and older. Technically, the trees are not mature enough to bear nuts until four although 

a small crop often is obtained now from three year old trees. A qualitative (zero or one) 

variable for alternate years was included to measure the size of the alternate bearing effect. 

Weather (and other) induced variations are always so great relative to the alternate yield 

phenomena in almonds that it has been difficult for pomologists to determine the magnitude 

of the alternate bearing in almonds. 
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The production function was estimated as a pooled cross-section time series model: 

cross-section refers to the fact that data was from seven counties and two other regions 

composed of groups of counties and time series refers to the fact that these cross-section 

data are for the years 1970-1985. Hence, the estimation was based on a total of 144 

obselVations. Dummy variables were employed for eight of the nine regions with Butte 

County being the base region. The variable for rainfall used was inches of rainfall in 

February squared. Experimentation with rainfall and rainfall squared indicated that rainfall 

squared performed better. The relationship was estimated by Generalized Least Squares 

regression and the results are presented in Table 1. 

The data used to perform the estimation was county level data on almond acreage and 

production in California from 1970 to 1985, collected from the relevant County 

Agricultural Commissioner's Reports. The data on rainfall was collected from the National 

Oceanographic and Atmospheric Administration published data. February rainfall was 

chosen as most representative of the bloom period. Within each county a weather station 

nearest the center of the almond growing area was chosen. The data was organized into 

nine regions: seven counties (Butte, Fresno, Kern, Madera, Merced, San Joaquin, and 

Stanislaus) and two groups of counties that grow fewer almonds, North (Colusa, Contra 

Costa, Glenn, Solano, Sutter, Tehama, Yolo, and Yuba Counties) and South (Kings, San 

Luis Obispo, and Tulare Counties). 

The results of this estimation allow two interesting effects to be calculated, the effect of 

rainfall during the pollination period and the magnitude of the alternate bearing effect in 

almonds. The results of the regression show the alternate bearing phenomenon to result in 

a variation of 152 pounds per acre in the yield of almonds from year to year. This is 

certainly a significant amount compared. to common yields of about 1400 pounds per acre. 

Still, when this variation of approximately eleven percent is compared to the variation in 

Figure 1, it is easy to see how this effect was masked by the remaining variation. The 
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rainfall effects are somewhat more complicated as the coefficients involved are allowed to 

vary by region. 

Table 1 presents some figures on the effects of rainfall and regional location on almond 

yields. The mean and standard deviation of the February rainfall squared are given for each 

of the nine regions, along with the mean yield. Then the estimated regional variation in 

yield is shown. This variation is due to such factors as differences in soil, climate, orchard 

age, and cultural practices. The final column gives the estimated loss in yield in a year with 

average rainfall in February from that rain. All yields are given in meat pounds per acre. 

Table 1. Effects of Rainfall and Location on Yield 

Region Rainfall (in.2 i) Regional ObJa r.re) Rain (lb/acre) 

Mean Std. D( ~ Mean Yield E feet Mean Loss 

(1) (2) (3) (4) 5) (6) 

Butte 20.34 25. 0 1070.5 0.0 -122.1 

Fresno 5.81 7. 03 1088.0 1)2.0 - 92.0 

Kern 2.84 6. 33 1429.0 72.0 - 79.5 

Madera 5.53 6. ~2 960.0 1~0.0 -154.8 

Merced 6.36 6. ~2 1023.6 ~6.0 -114.5 

San Joaqu n 4.27 4. 1 1132.0 80.0 -153.7 

Stanilaus 5.77 7. 4 1156.2 34.0 -150.0 

North 12.83 17 78 688.0 - 14.0 - 66.7 

South 7.26 9. 8 671.6 - 66.0 - 46.0 

It should be noted when analyzing the figures in Table 1 that the effect of rainfall varies 

by region. Because areas of the state receive differing amounts of rainfall on average, the 



( trees in some regions seem better able to tolerate rain than the trees in others. Also, a 

higher average rainfall in a region can be partially translated into a lower average region 

specific yield. In this way, some of the effect that the rain has on yield in a high rainfall 

area can be hidden. For easy reference, these estimated regional variations in yield are also 

included in the table (with Butte County serving as a base and assigned a value of zero). 

As a way to see more clearly how rain affects almond yields and how this varies by 

region, the estimated loss in yield due to one inch of rainfall in February above normal was 

calculated for each region. This was done using the estimated production function 

discussed above and presented in the appendix. These results are found in Table 2. It can 

be seen that the loss in yield from an additional inch of rainfall can be quite large. Also, the 

loss from the flrst inch of rain past the normal amount is the largest in three counties with 

very low average rainfalls (Madera, San Joaquin, and Stanislaus). In fact, it is interesting 

to note that the loss is smaller in the county with the lowest average rainfall, Kern. This is 

in part due to this low average. Remembering that the rainfall is squared, it is not diffIcult 

to see that with another inch or two, the loss in yield from an extra inch of rainfall in Kern 

County would be just as large as for the Counties of Madera, San Joaquin, and Stanislaus. 

Table 2. Loss in Yield From One Inch Above Normal Rain 

Re ion 

Butte 60.1 

Fresno 93.1 

Kern 122.4 

Madera 159.7 

Merced 108.8 

San Joaqui 184.8 

Stanislaus 150.9 
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North 42.5 

South 35.8 

With the figures in Tables 1 and 2 it can be seen that although almonds were found 

to be alternate bearing by an average of 152 pounds per acre, this variation is often masked 

by the much larger effect that rainfall has on yield. By using Generalized Least Squares 

regression techniques it was possible to compute the relative magnitudes of both the rainfall 

and the alternate bearing effects on almond yields. 

Appendix. Generalized Least Squares Estimates 
of Almond Production Function 

Symbol Variable Coefficient t-ratio 

80 Intercept -A024x104 5.84 
81 Bearing acreage (A) .780 17.90 
n:2 February rainfall x A -.003 3.64 
dl Alternate bearing dummy x A -.076 4.13 

Acrea~e x Re~ional Dummies 

82 A x Fresno .076 1.71 
83 A x Kern .036 .89 
B4 A x Madera .075 1.65 
B5 A x Merced .023 .34 
B6 A x San Joaquin .090 1.58 
B7 A x Stanislaus .067 2.56 
88 A x North Region -.257 8.37 
89 A x South Region -.083 1.72 

Acrea~e x February Rainfall x Re~ional Dummies 

n:2 A x FR x Fresno -.005 1.29 
n:3 A x FR x Kern -.011 3.94 
n:4 A x FR x Madera -.011 2.60 
n:5 A x FR x Merced -.006 1.21 
n:6 A x FR x San Joaquin -.015 2.82 
n:7 A x FR x Stanislaus -.OtO 4.05 
n:8 A x FR x North Region .0004 .51 
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( 1t9 A x FR x South Region .0002 .13 

R2 = .927 R2 = .916 s = .984 

Pit = tons of almond kernels produced in region i, in year t 
Ail = bearing acreage, in thousands of acres for region i, in year t 
Rkt = dummy variable equal to 1.0 if the kth region, 0 otherwise, k=2, 9 
Dit = dummy for alternate bearing, equal to 1.0 in odd years, 0 in even years 
FRit = inches of February rain, squared in region i, in year t 
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C auses of almond yield 
variations 
Jeffrey Dorfman Q Melody Dorfman Q Dale Heien 

Statistical analysis of regional, 
rainfal/-related effects could help 
early-spring forecasting 

California almond production is charac­
terized by wide fluctuations in yield, due 
mainly to a combination of rainfall and a 
moderate alternate bearing effect. Because 
annual additions to acreage have been much 
smaller than the yield variations, the fluc­
tuations have resulted in large swings in 
production (fig. 1). In this report, we discuss 
the variations in almond yield caused by 
rainfall, regional location, and alternate 
bearing. 

Background 
A. previous report described a technique 

( .prove the state's objective almond sur­
vey prepared inJune of each year (California 
Agricldture, March-April 1987). Although 
quite accurate at predicting crop size, the 
state's survey and the improved estimate 
(the "Dorfman-Heien correction") are not 
available until July. Because a significant 
proportion of the almond crop is exported, 
it is essential to be able to predict total crop 
production as early as possible. Even 
though the state forecast appears two 
months before harvest begins, an earlier 
forecast would be useful for pricing and for 
determining the optimal allocation between 
domestic and foreign sales. 

We have developed a production func­
tion that allows a preliminary crop forecast 
in February with later adjustments through 
the state July forecast and the correction. 
Althoughanearliercrop forecast is possible, 
it should be cautioned that its predictions 
are not as reliable as either the state July fore­
cast or the Dorfman-Heien forecast. How­
ever, the estimates do allow for a study of the 
effects of rainfall and other factors on yield. 

cause cross-pollination is necessary, bees 
are vital to a good crop. If it rains too much 
during the bloom period, pollination by 
bees is inadequate and the almond crop is 
small. This situation occurred in 1986. 

We collected rainfall data for the period of 
February 1 through March 15. Tests re­
vealed February rainfall to be as good an 
indicator of production as the rainfall from 
February 15 to March 15, which more accu­
rately reflects the bloom period. Because of 
earlier availability and ease of collection, we 
chose February rainfall as the variable to be 
used in forecasting production. 

Methods 
To measure the effect of rainfall and of 

alternate bearing, we statistically estimated 
a production function for almonds. A pro­
duction function measures the relationship 
between inputs and output. The inputs 
were acreage, rainfall, and a variable for the 
alternate bearing pattern of almond trees. 
At a simple level, alternate bearing means 
that the crop alternates between relatively 
light and relatively heavy yields due to 
physiological factors. Almonds are consid­
ered moderately alternate bearing. The 
deviation of the past year's yield from the 
historical average yield was used to model 
the alternate bearing pattern. 

the deviation in the past year's yield from 
the average yield is of particular interest" 
because continual weather-induced vari­
ations have made it difficulf to detennine 
the magnitude of the alternate bearing effect 
in almonds. 

The production function was estimated as 
a pooled cross-section time-series model. 
Cross-section refers to the fact that data 
came frdm seven counties and two other 
regions composed of groups of counties. 
Time series refers to the fact that these cross­
section data are for the years 1971-85. The 
estimation thus was based on a total of 135 
observations. Dummy variables were 
employed for eight ofthe nine regions with 
Butte County as the base region. These vari­
ables were used to allow the average yield 
and rainfall sensitivity to vary by region. 
The variable for rainfall was inches of rain­
fall in February squared. Experimentation 
with rainfall and rainfall squared indicated 
that rainfall squared performed better. The 
relationship was estimated by Generalized 
Least Squares regression. The equation and 
results are presented in the boxed table. 

We used county-level data on almond 
acreage, production, and rainfall from 1970 
to 1985 for the estimation. The acreage and 
production data came from County Agri­
cultural Commissioner's Reports, and the 
February rainfall data from the National 
Oceanographic and Atmospheric Admini­
stration. We chose a weather station nearest 
the center of the almond-growing area in 
each county. The data were organized into 
nine regions: the seven counties (Butte, 
Fresno, Kern, Madera, Merced, SanJoaquin, 
and Stanislaus) and two groups of counties 
that grow fewer almonds-North (Colusa, 
Contra Costa, Glenn, Solano, Sutter, 
Tehama, Yolo, and Yuba)-and South 
(Kings, San Luis Obispo, and Tulare). 

Results 
The results of this estimation (shown in 

the boxed table> allow two interesting ef­
fects to be calculated: the effect of rainfall 
during the pollination period and the mag­
nitude of the alternate bearing effect in al­
monds. We found the alternate bearing 

ltoo 
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The production of almonds is greatly in­
fluenced by rainfall during the bloom pe­
riod. Almonds typically bloom in February 
and March, during California's rainy sea­
son. Almond treescannot~lf-pollinate, but 
m,l';'. be pollinated by another almond vari­
e,- ~or this reason, almond orchards al­
ways contain at least two varieties of trees, 
planted either in alternating rows or in two 
rows of one and one row of the other. Be-

We began with a relation that indicates 
yields vary by region, by the amount of rain­
fall in the region, and by last year's deviation 
from average yield. Since, by definition, 
yield equals production divided by bearing 
acreage, the production relationship can be 
estimated as yield times bearing acreage. 
This was then translated into a relation that 
specified production as a function ofbearing 
acreage times regional effects, bearing acre­
age times the rainfall effect, and bearing 
acreage times the alternate yield effect. 
Bearing acreage represents the number of 
acres of almond trees four years of age and 
older. Technically, the trees are not mature 
enough to bear nuts until the fourth year 
although a small crop often is Qbtained now Fig. 1. Large fluctuations in yield are typical of 
from three-year-old trees. The variable for almond production in California. 
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TABLE 1. Effect. of ralnfanand location on yield 

Rllnfln 

Region Average Std. Dev. 
(1) (2) (3) 

------- Inches ------
Butte 3.54 2.88 
Fresno 1.85 1.61 
Kern 1.18 1.25 
Madera 1.90 1.44 
Merced 2.10 1.45 
San Joaquin 1.73 1.16 
Stanislaus 1.87 1.56 
North 2.72 2.41 
South 2.09 1.76 

phenomenon to be 12.2 percent of the past 
year's deviation from an average yield. If 
one year's yield is 10 percent higher than 
average, the next year's should thus be 1.22 
percent below average, holding weather 
effects constant. Since the average deviation 
in yield (in absolute value terms) is 249 
pounds per acre, the average alternate bear­
ing effect is 30.4 pounds per acre (249 x 
0.122). This means that, in an average year, 
the yield is 30 pounds per acre (2 to 3 per­
cent) larger or smaller than the yield ex­
pected, because of the physiological effect 
on the tree of the past year's crop. This 30-
pound alternate bearing effect is in the op­
posite direction from the past year's devia­
tion in yield from the average. Of course, in 
a year following a particularly low or high 
yield, this alternate bearing effect can be 
considerably larger. In some years, the alter-

Location 

Effect Effect Average 
(4) (5) (8) 

--------- meat Ib/acre ----------
-123.9 0.0 1.070.5 
-100.6 152.0 1.088.0 
- 63.9 72.0 1.429.0 
-129.6 150.0 960.0 
-122.6 . 46.0 1.023.6 
-157.6 :180.0 1.132.0 ~ 

-153.5 134.0 1.156.2 
- 68.8 -514.0 688.0 
- 27.8 -166.0 671.6 • 

nate bearing effect has a magnitude of ap­
proximately 100 pounds per acre, or about 
8 percent of the yield. These effects vary 
slightly by region because of differences in 
each region's average deviation, but all have 
altern~te bearing effects of very similar 
magnitudes. 

When this variation of approximately 2 
percent is compared with the fluctuations in 
figure 1, it is easy to see how this effect was 
masked by the remaining variation. The 
rainfall effects are somewhat more compli­
cated, because the coefficients involved are 
allowed to vary by region. 

Table 1 presents some figures on the ef­
fects of rainfall and regional location on 
almond yields. Column 4 gives the esti­
mated loss in yield from average rainfall in 
February. We calculated this figure by 
multiplying each region's estimated coeffi­
cient for rainfall sensitivity (x) by the aver­
age February rainfall squared for that re­
gion. Column 5 shows the estimated re­
gional variation in yield. These figures are 
simply the values of the coefficients for the 
regional dummy variables for acreage (the 
B's) converted to meat pounds from meat 
tons. This variation is due to such factors as 
differences in soil, climate, orchard age, and 
cultural practices. The final column pres­
ents the average yield for each region. 

As indicated in table 1, the effect of rain­
fall varies by region. Because different areas 
ofthestatereceiverainfallatdifferentinten­
sities (that is, lots in one day or a slow drizzle 
for a week), the rainfall in inches does not 
necessarily represent the same number of 
days of rain in every region. Since it is pri­
marily the amount of time lost to pollination 
during rainfall that matters, the differences 
in the effect of rainfall on the various regions 
are probably due to differences in the pat­
tern ofrainfall. Also, a higher average rain­
fall in a region can be partially translated 
into a lower region-specific average yield. In 
this way, some of the effect that rain has on 

.yield in a high-rainfall area can be hidden. 
For easy teference, these estimated re&ional 
variations in yield are also included mthe 
table (in column 5). 

To see more clearly how rain affects al­
mond yields and how this effect varies by 
region, we caltulated each region's esti-
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TABLE 2. Yield 10 • • from rllnflll one Inch above 
normll 

Region 

Butte 
Fresno 
Kern 
Madera 
Merced 
San Joaquin 
Stanislaus 
North 
South 

Lo .. 
meat Ib/acre 

49.2 
81.4 
75.6 

112.5 
100.2 
164.6 
126.1 
34.5 
19.8 

mated yield loss due to 1 inch of rainfall 
above normal in February. We used the es­
timated production function previously 
discussed. To calculate the values pre­
sented, the x/s (remembering to add in the 
value of XI' the base sensitivity) from the 
regression are multiplied by the difference 
between 1 inch above average rainfall 
squared and average rainfall squared for 
each region, then converted to meat pounds 
from meat tons. For example, for Fresno 
County, the calculation is: 

Loss = (-.003-.006) X [(2.845)2 - (1.845)2) X 

2000 = -81.4 meat pounds per acre. 

It is evident that the loss in yield from an 
additional inch of rainfall can be quite large 
(table 2). Also, the loss from the first inch of 
rain past the normal amount is the largest in 
three counties with very low average rain­
falls (Madera, San Joaquin, and Stanislaus). 
It is interesting that the loss is smaller in the 
county with the lowest average rainfall, 
Kern. This result is due in part to this low 
average. Since the rainfall is squared, an­
other inch or two would make the loss in 
yield from an extra inch of rainfall in Kern 
County just as large as those for Madera, San 
Joaquin, and Stanislaus. 

Conclusions 
By using statistical techniques, we were 

able to compute the relative magnitudes of 
the rainfall and alternate-bearing effects in 
almonds. The results show that, although 
almonds display an alternate-bearing pat­
tern with an average difference of 30.4 
pounds per acre between heavy and light 
crop years, this variation is often masked by 
the much larger effect of rainfall on yield. 
These rainfall effects proved to vary because 
of the amount and intensity of rainfall in a 
given region. 

Melody Dorfman is Post-graduate Research 
Assistant, Division of Environmental Studies; 
Jeffrey Dorfman isagraduatestudent,and Dale 
Heien is Professor, Department of Agricultural 
Economics. All are with the University of Cali­
fornia at Davis. The authors acknowledge the 
useful comments of Dale Kester, Department of 
Pomology, UC Davis. 
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Impro~ing almond crop forecasts 
Jeffrey Dorfman 0 Dale Heien 

Wide fluctuations in the California almond crop 
from year to year complicate marketing strategy. 
Including early-season weather data could 
improve the accuracy of crop estimates. 

The California almond crop fluctuates 
widely: over the last 10 years it has 
ranged from 181 to 587 million meat 
pounds (the weight of the kernels only, ex­
cluding the shells) (fig. 1). Such fluctu­
ations make planning a marketing strate­
gy very difficult. In this article, we report 
on our attempt to use weather informa­
tion to improve the annual California al­
mond crop forecast. 

There are essentially two markets for 
almonds: one for processing use in cere­
als, chocolate bars, and the like, and an­
other for direct consumption as raw or 
smoked nuts. Another dimension is added 
by export demand, mainly from West 
Germany, where almonds are used in pro­
cessing. Because demand by these proces­
sors is relatively stable from year to year 
and the crop varies to such an extent, al­
mond sellers must have a large "swing" 
market of customers who are flexible in 
adapting their demand to changing mar­
ket conditions, especially price. Almond 

California's almond crop ranges from 181 to 
587 million pounds of nut meats per year; 
demand is relatively stable. 

marketers must design their pricing strat­
egies with these factors in mind. 

Although almonds can be stored, it is 
generally desirable to sell all, or almost 
all, of a given year's crop. In large crop 
years, some stocks may be held over, but 
a marketer still must decide what price is 
needed to sell the desired amount. Al­
mond marketers not only must select a 
pricing strategy that will clear the mar­
ket, but also must accurately forecast 
what that market (harvest) will be. For 
this they rely on state crop estimates. If 
these estimates are incorrect, both the 
marketers and the producers will lose po­
tential profit. Both would benefit from 
having an early, accurate estimate of the 
almond crop size. 

Model development 
Each year the California Crop and 

Livestock Reporting Service estimates 
the California almond crop (hereafter re­
ferred to as the state estimate). While 
generally quite good, occasionally the es­
timate is off by a significant amount from 
a marketing viewpoint. It takes into ac­
count the bearing acreage, a sample of 
the number of nuts per tree, and various 
scientific analyses of a large number of 
sampled nuts. The final state sample is 
taken in June and the final estimate is 
released in mid-July. The harvest gener­
ally starts in early August, peaks in Sep­
tember, and continues through November 
or even December. Because of the long 
harvest season, marketers have to wait 
months to know the true crop size. 

Our goal was to produce an improved 
early estimate of the California almond 
crop. Although it seemed unlikely that the 
state's technical analyses could be im­
proved, the forecasting errors suggested 
that something might be missing from the 
model. We began our search with the 
weather. 

A plant needs water, sunlight, and nu­
trients for growth. Despite the need for 
water, hard rain during the bloom period 
can interfere with cross-pollination and 
severely shrink crop size. The state sam­
ple picks up such early-season rain dam­
age, however, so we did not choose rain­
fall as a weather variable. 
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Temperature could be considered a 
fourth class of input. While it is clear that 
extreme temperatures, both cold and hot, 
can damage plants, the effects of moder­
ate temperatures are not completely 
understood. We therefore chose tempera­
ture as the weather variable. Tempera­
ture also could be used as a proxy for soil 
moisture because of the proportional rela­
tionship between temperature and evapo­
transpiration. 

The next question was how to measure 
temperature for a crop grown over a 
large part of the state. The California Al­
mond Growers Exchange (CAGE) pro­
vided production records for 10 years 
(1976-85). Using their data, and treating 
each locale as typical of the weather 
throughout the area from which the al­
monds were gathered, we derived weights 
for the different almond-growing areas of 
the state. Next we obtained temperature 
data for these locales. Finally, computa­
tion of a weighted average of the data 
provided a single value for the entire 
state. In extending this analysis to other 
crops, county acreages of bearing or­
chards could be used to construct the 
weights. 

Two alternative statistics were com­
puted from temperature data. The first 
was cooling degree days per month. (Cool· 
ing degree days are compiled to estimatE 
energy use for air-conditioning in thE 
summer.) One cooling degree day wa! 
added for each degree that the daily mear 
temperature exceeded 65 OF. A day with ~ 
mean temperature of 70° would be a ! 
cooling degree day. Nothing was subtract 
ed for days with average temperature: 
below 65 0. Each day's value is simpl~ 
added over the month. The second statis 
tic computed was the number of days in • 
month with a high temperature ove 
90°F. Both statistics were compiled fo 
the months of May, June, and July 197e 
85 from National Oceanic and Atmo 
spheric Administration data. 

Discussions with Stephen Heinrich 
and Melody Warfield at CAGE and Un: 
versity of California pomologists Dal 
Kester and Warren Micke, at Davis,led t 
the hypothesis that temperatures durin 
May, June, and July should affect the si2 
of the crop. There was no definite idea ( 
what mathematical form the relationshi 
between temperature and crop size woul 
take. We then specified crop size relatiOl 
using alternative mathematical fom 
and estimated these relations by regre 
sion techniques. We chose the state esl 




