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A. Summary  
The overarching aim of this study is to develop a quick and inexpensive tool that can be used 
to evaluate almond tree water needs in order to help guide efficient irrigation practices. The 
tool is based on the use of inexpensive smartphone-based thermal cameras to measure leaf 
temperatures, which are used to infer leaf/canopy water status. Water lost by the leaf 
(transpiration) creates a cooling effect, and can reduce the leaf temperature to several degrees 
below the ambient air temperature in the case of a well-watered tree. As trees run out of water, 
transpiration begins to decline and the discrepancy between leaf and air temperature is 
reduced. However, transpiration is only one of several factors that affects the temperature of a 
leaf. A challenge is the separation of the effects of weather and environment from transpiration 
within the leaf temperature measurement, since ambient weather conditions also play an 
important role in determining the temperature of a leaf. This separation is typically performed 
using a crop water stress index or CWSI, which is purported to isolate the effects of plant water 
status within leaf/canopy temperature measurements. 
 
We used a sensitivity analysis to show that the CWSI is as sensitive to wind speed as it is to 
plant water status, which can potentially introduce significant noise in the CWSI. This means 
that the CWSI must decline substantially before one can conclude that the tree has become 
“stressed”, because the decline in the CWSI itself must be much larger than the error in the 
CWSI measurement. We found this to be problematic in almond, potentially rendering the 
CWSI useless in certain cases. Our experiments showed that during the period of low to 
moderate stress, the CWSI was relatively insensitive. Trees needed to be very stressed (e.g., 
1-2 weeks without water) in order to observe a statistically significant decline in CWSI. We 
tried calculating the CWSI based on individual leaf temperature in the sun/shade, whole-
canopy temperature, and only the upper sunlit portion of the canopy, and found a similar result 
in all cases. Initial results indicated that formulation of a modified CWSI based on the 
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temperature of the trunk surface could potentially yield a water status indicator that was 
sensitive almost immediately following an irrigation event. 
 

B. Objectives 
1. Goal(s) and specific objectives of the proposal  
The main aim of this study is to develop a smartphone application based on low-cost 
thermography that can be used to quickly evaluate tree water status and help guide irrigation 
decisions.  
 
The research questions are: 
Question 1. How does variation in environmental conditions (PAR, air temperature, relative 
humidity and wind speed) influence the crop water stress indices (CWSIs)? 
Question 2. Can inexpensive thermography track the evolution of the water status decline of 
almond trees at various organ scales (leaf, canopy, or trunk) during a dry-down period? 
Question 3. Can inexpensive thermography be used as a tool to schedule irrigation? 
 
2. Annual outputs or milestones for each of the objectives  

 
Table 1. Main Goal(s), key objectives, timelines and milestones 

 
 

C. Annual Results and Discussion 

Main Goal:  Evaluate whether low-cost infrared thermography can be used as a tool for almond 
irrigation scheduling 

Objective(s) Date to be 
accomplished 

Milestones and deliverables associated to 
the objective 

Obj. 1 Develop a model for 
evapotranspiration (or other 
plant variables in connection 
with tree water status) 
inversion from thermographic 
imagery 

 

July 2019 
This objective is complete, and resulted in the 

submission of two scientific publications (one has 
been accepted). 

Obj. 2a Collect field data for 
methodological development and 

testing  

September 
2020 

This objective will produce experimental data for 
development and testing, and will be complete 

after all intensive observation periods have 
concluded. We have completed two field 

seasons of data collection, and will complete 
one more in 2020. 

Obj. 2b Analyze field data for 
calibration and validation 

December 
2020 

Analysis of data from years 1 and 2 has been used 
to quantify the performance of the method. A 

scientific publication is in prep., and will be submitted 
early 2020. Additional analysis will continue following 

the 2020 field season. 
Obj. 3. Develop a smartphone 

application (“app”) for 
distribution 

N/A 
Results to date suggest that thermography is not 

useful for irrigation scheduling in almond, and thus it 
will not be useful to develop an app. 
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Obj. 1 - Impact of the environmental conditions and stomatal conductance on crop 
water stress indices (CWSI) 

The goal of this part of the project was to better understand the impact of environmental 
conditions (PAR, air temperature, relative humidity and wind speed) and stomatal conductance 
on the CWSI. Ideally, we would like the CWSI to have low sensitivity to environmental factors, 
and high sensitivity to plant water status as indicated by the stomatal conductance. In order to 
quantify this sensitivity, a Morris sensitivity analysis was used to evaluate the impact of each 
parameter (environmental factors and stomatal conductance) on the CWSI value. We used the 
energy balance model to simulate the leaf temperature, the wet and dry reference surface 
temperature (components of CWSI) to evaluate four different formulations of CWSIs. 
 
The most commonly used CWSI, defined as CWSI2 = (Tdry – TL) / (Tdry – Twet), showed the best 
ratio between the sensitivity of environmental factors and stomatal conductance. According to 
the results of the sensitivity analysis, CWSI2 has the desirable trait that all environmental 
variables (except wind speed) appear to have a linear impact. 
 

 
This CWSI is moderately sensitive to light and air temperature, and highly sensitive to wind 
speed and stomatal conductance (Figure 1). This means that significant variation in CWSI 
could be observed without any change in water status. This could create significant error, and 
may mean that plants must be very stressed before a statistically significant decline in CWSI is 
observed. 
 
We also demonstrated that it is not recommended measure CWSIs in shaded conditions 
(leaf/canopy scales), but rather to perform measurements in full sun (i.e., PAR>700 μmol m-2 s-

1). The lack of strong radiative forcing increases the impact of other environmental variables 
such as Tair and decreases the impact of gs. 
 
The complete results are described in publication 1, attached at the end of this report. 
 
 

Obj. 2 – Tracking the CWSI of well-irrigated and non-irrigated trees at various 
scales/organs (leaf, canopy, trunk) 

Previous work has repeatedly shown that the CWSI approach is able to ‘detect’ differences 
between a well-watered crop and a water stressed crop. However, this does not tell us whether 
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Figure 1 Example of global sensitivity analysis of CWSI 
(formulation 2) using the Morris method. Mean (μ* ranks 

the parameters according to the magnitude of their 
impacts on the CWSI) and standard deviation (σ 

indicates the non-linear and/or parameter interaction 
effects) of the elementary effects of air temperature (Tair), 
relative humidity (RH), photosynthetically active radiation 
(PAR), wind speed (u), and stomatal conductance (gs) on 

CWSI2  in the sun. [see Publication 1 for the details] 
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the method can be used to schedule irrigation. A useful method should be able to detect the 
onset of stress soon after an irrigation event, and well before stomata have started to close in 
response to declining water potential.  
 
We conducted a dry-down experiment in which the decline in tree water status was closely 
followed through time following a heavy irrigation event that ensured the soil profile was full. 
The experiment was conducted in Davis, CA, using four-year-old nonpareil trees grafted on 
Krymsk 86 rootstock. A number of instruments, including the thermographic camera, were 
used to measure the plant response to the dry-down and ultimately the onset of stress, which 
was defined as the point at which stomata first began to close when subjected to constant leaf 
environmental conditions. 
 
The dry-down was observed for two treatments, one in which no water was applied, and the 
other being ‘well-watered’. The midday water potential of the well-watered trees fluctuated 
around -0.9 MPa, which was slightly below the theoretical non-water stressed baseline (Figure 
2a, red curve). The water status of the stressed trees gradually decreased from ca. -0.8 MPa 
to ca. -2.2 MPa during the non-irrigation period and was high (ca. -2.2 MPa) at the end of the 
measurement period (Figure 2a).  
 

 

 

 

Figure 2 Relationship between the midday 
stem water potential of the water stressed 
trees (ψmid) and the net photosynthesis rate 

(Pn; b) or the stomatal conductance (gs; c). (a) 
Relationship between the midday stem water 

potential of the control and water stressed 
trees. The non-water stressed baseline is 

indicated in red dotted line. Significant 
difference between control and water stressed 

trees are indicated by different letters (light 
type: p < 0.05; underlining text in bold type: p 

< 0.06). 



Almond Board of California  - 5 -  2019.2020 Annual Research Report 
 

 
The stomatal conductance decreased after the midday water potential fell below approximately 
ψmid = -1.7 MPa (Figure 2c), indicating the onset of stomatal closure. Decline in photosynthesis 
rate occurred sooner at ψmid values below ca. -1.2 MPa (Figure 2b). When the stomata began 
to close, the net photosynthesis rate had fallen to about 20% of its maximum rate.  
 
While measurements of stem water potential and stomatal conductance indicated a clear onset 
of water stress midway through the experiment, the CWSI based on thermal imagery showed 
very little variation at both the leaf and canopy scales (Figure 3). CWSIs measured at the leaf 
scale had high variability, and only toward the end of the experiment was there a statistically 
significant difference between the well-watered and drought stressed treatments. CWSIs 
calculated based on whole-canopy or upper-canopy measurements were much more 
consistent with lower variability. However, there was still little difference between the well-
watered and water stressed treatments until the end of the experiment. 
 
Based on the data we have collected, the CWSI based on leaf, whole canopy, and upper 
canopy temperature, we could not distinguish a significant difference between the ‘stress’ and 
‘well-watered’ treatments until stress was substantial (long after stomata have started to close; 
Figure 3a, b, c). This means that by the time the method can reliably detect the onset of stress, 
it is probably too late and yield may be affected. 
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We did find evidence suggesting a CWSI based on trunk temperature could be a sensitive 
indicator of plant water status starting soon after the dry-down began (Figure 3d). These 
results need to be further verified with additional experiments. 
 
Conclusion 
To conclude, in many cases, thermography may be able to detect areas of the orchard with 
significant variation in plant water status at any single instant in time. However, we have not 
yet found evidence to suggest that thermography along with the traditional leaf/canopy CWSI 
is a potentially viable tool for scheduling irrigation because of the lack of sensitivity of the 
CWSI throughout time as water status declines following an irrigation event. Our results 
indicated that the traditional CWSI is moderately sensitive to light and air temperature, and 
highly sensitive to wind speed. This may contribute to lack of sensitivity of the CWSI during the 
initial period when stomata begin to close.  
 
Future work could further improve calculation of CWSIs by developing a normalization that can 
remove the impact of the wind speed. It is also necessary to verify results for other almond 
cultivars and soil textures. Finally, additional experiments are needed to explore the calculation 
of the CWSI based on trunk temperature (i.e., improve the formulation of the stress index). 
 

D. Outreach Activities 
1. Outreach activities including the event description  

• Almond Board Conference in 2017, 2018, and 2019. 
• Invited Talk: "Development of the Next Generation of Perennial Crop Modeling Tools", 

CalASA/California Plant and Soil Conference, Fresno, CA. 
  

E. Materials and Methods (500 word max.):   
1. Outline materials used and methods to conduct experiment(s) 

Plant material 
During the 2019 growing season, we worked on the same almond orchard as the 2018 
growing season. We used the Prunus dulcis cultivar “Non Pareil” grafted on Krymsk 86 
rootstock.  
 

 
Figure 4 Experimental almond orchard used in the study (in collaboration with Dr. Astrid Volder, U.C. Davis). 
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Experimental procedure 
The following group of measurements were simultaneously collected: 
• Organ surface temperature: Thermal images were obtained for leaves and whole trees with a 
FLIR smartphone camera (FLIROne® Pro for iOS) connected to an iPhone. This provided the 
spatial distribution of surface temperature across the leaf, the canopy or the trunk, and forms 
the basis of the measurement technique. 
The dry and wet reference surfaces temperature (Tdry and Twet) for the leaf and the canopy are 
defined from the temperature of a green paper (Tref) and by using 2 linear models (one for Tdry 
and one for Twet; publication 2 p. 32). For the trunk, Tdry was defined by Tair + 7oC and Twet by 
Tsoil at 15cm – 7oC (based on the second law of the thermodynamic and the water flux circulating 
in the trunk).  
• Water potential (ψ): Immediately after the taking pictures, the water potentials of the leaf were 
measured using a pressure chamber.  
• Meteorological data: The air temperature (Tair), the relative humidity (RH) and the soil 
temperature at 15 cm (Tsoil at 15cm) were obtained from either the weather station of the CIMIS 
network or locally near the studied trees with a thero-hygrometer probe for smartphone (Tair 
and RH).  
• Current stomatal conductance, net photosynthesis rate: Gas exchange measurements with 
saturating light (current stomatal conductance and net photosynthesis rate) were carried out 
using an LI-6800 portable photosynthesis system for the leaf. 
 

F. Publications that emerged from this work 
1. List peer review publications in preparation, accepted or published 

Accepted publications: 
- Poirier-Pocovi, M., Bailey, B.N. 2020. Sensitivity analysis of four crop water stress 

indices to ambient environmental conditions and stomatal conductance. Scientia 
Horticulturae. 259, in press. https://doi.org/10.1016/j.scienta.2019.108825 (see p. 8) 

 
Submitted publications: 

- Poirier-Pocovi, M., Volder, A., Bailey, B.N. 2020. Modeling of reference temperatures 
for calculating crop water stress indices from infrared thermography. Agricultural Water 
Management. Moderate modifications. Submitted process in progress (see p. 32) 

 
Publications in preparation: 

- Poirier-Pocovi, M., Bailey, B.N. 20xx. Tracking the tree water status of Prunus dulcis 
with thermal imaging (accessory for smartphone) to schedule the irrigation. 

 
2. Other publications (e.g. outreach materials) 

3 posters during the Almond Board conference in December 2017, 2018 and 2019: 
- Bailey, B.N. 2017. Assessment of Almond Water Status using Inexpensive Thermal 

Imagery. Almond Board Conference 2017. Sacramento, California (USA), 5-7 
December 2018. 

- Poirier-Pocovi, M., Bailey, B.N. 2018. Assessment of Almond Water Status using 
Inexpensive Thermal Imagery. Almond Board Conference 2018. Sacramento, California 
(USA), 4-6 December 2018. 
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- Poirier-Pocovi, M., Bailey, B.N. 2019. Assessment of Almond Water Status using 
Inexpensive Thermal Imagery. Almond Board Conference 2018. Sacramento, California 
(USA), 10-12 December 2018. 

 
3. Copies of publications 

Only the accepted and submitted publications are provided with this annual report.
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ORIGINAL ARTICLE  

Sensitivity analysis of four crop water stress indices to ambient 

environmental conditions and stomatal conductance 
 

Magalie Poirier-Pocovi*a, Brian N. Baileya 

 

*For correspondence, E-mail: mdpoirier@ucdavis.edu 

 
a University of California, Department of Plant Sciences, One Shields Avenue, Davis, 

California 95616-8571, U.S.A. 

 

Highlights 

• Sensitivity of CWSIs to ambient conditions and stomatal conductance was 

analyzed. 

• Performance was assessed from sensitivity to stomata relative to ambient 

conditions 

• All CWSIs were highly sensitive to wind speed  

• All CWSIs performed poorly in shaded conditions 

• Two CWSIs performed well in sunny conditions and removed most 

environmental effects  
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ABSTRACT  

Crop water stress indices (CWSIs) quantify plant water status based on measurement 

of plant temperature. The goal of CWSI formulation is to normalize measured leaf 

temperatures based on reference temperatures to remove sensitivity to ambient 

environmental conditions (e.g., air temperature, humidity, radiation), while retaining 

sensitivity to plant water status as reflected by stomatal conductance. This study 

sought to better understand the sensitivity of these temperatures to ambient 

environmental conditions, and ultimately how they influence various CWSIs. The 

surface energy balance was modeled to simulate the impacts of input parameter 

variation on leaf temperature and reference surface temperatures used to calculate 

four different CWSIs. The performance of the CWSIs were assessed based on their 

ability to maximize sensitivity to stomatal conductance while minimizing the relative 

sensitivity to ambient environmental conditions. 

The sensitivity analyses indicated that all four CWSIs performed poorly in shaded 

conditions, as they had relatively low sensitivity to stomatal conductance and were 

sensitive to all environmental parameters. Two CWSIs had high sensitivity to 

stomatal conductance, and low sensitivity to all environmental parameters except 

wind speed. None of CWSIs could remove sensitivity to all environmental parameters 

while retaining sensitivity to stomatal conductance.  

 

Keywords: Energy balance equation, crop water stress index, leaf temperature, 

sensitivity analysis, Morris method, OAT method 
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1. INTRODUCTION 

Water availability is becoming the most limiting factor for crop production in most 

countries of the world. In many regions, changing precipitation or melting snow and 

ice are altering hydrological systems, affecting water resources in terms of quantity 

and quality (IPCC, 2014). Adaptive water management techniques (i.e., adjusting the 

water supply according to the water needs of the crop to decrease water waste) can 

help adapt to uncertain hydrological conditions due to climate change.  

Woody perennial fruit and nut crops generally require extensive and variable 

irrigation in order to maximize yields or manipulate quality (Patumi et al., 1999; 

Goldhamer and Beede, 2004; Egea et al., 2009; García-Tejero et al., 2010), and thus 

there is a need for sensitive, robust, and user-friendly techniques for measurement of 

tree water status. To provide guidance for irrigation scheduling, crop water stress 

index (CWSI) approaches have been previously developed to relate leaf and canopy 

temperatures to plant water stress conditions (Idso, 1982; Jackson et al., 1981; Grant 

et al., 2007; García-Tejero et al., 2018). The calculation of these indices helps to 

estimate the water stress of a plant by comparing its leaf or canopy temperature (TL) 

with that of a non-water-stressed plant (Twet) and a dry plant (Tdry) to formulate a 

normalized indicator of plant water status (Nanda et al., 2018). Many CWSIs have 

been proposed that are based on some combination of wet and dry reference surface 

temperatures, each with the goal of increasing sensitivity of the index to water stress 

while decreasing sensitivity to environmental conditions (e.g., Jackson et al., 1981; 

Qiu et al., 1996; Jones et al., 1997, 2002; Jones, 1999; Grant et al., 2007). These 

CWSIs are typically formulated arbitrarily or loosely based on theoretical arguments, 

and an objective theoretical evaluation of their performance has yet to be performed. 

Quantitative evaluation of CWSIs in the natural environment is difficult because 

controlling or separating the effects of each environmental factor is generally not 

possible, and measurement errors become compounded with the formulation of the 

CWSI itself.  

In order to better understand how the different CWSIs are influenced by 

environmental variables, and ultimately the degree to which they are correlated with 

stomatal conductance, this study proposes to use a mathematical model based on the 

energy balance equation along with data obtained in an almond orchard to conduct a 

sensitivity analysis of different CWSIs and the associated temperature values on 

which they are based. The aims of this study were thus to (1) evaluate the sensitivity 
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of Tdry, Twet and TL to the variation of four important environmental factors (air 

temperature, relative humidity, absorbed photosynthetically active radiation, and wind 

speed) and stomatal conductance, (2) evaluate the sensitivity of four CWSIs following 

to these parameter variations, and (3) determine the best CWSI for inferring plant 

water status, which we considered  ̧as to be the CWSI that has maximal sensitivity to 

stomatal conductance compared to its sensitivity to environmental conditions. 

 

2. MATERIAL AND METHODS 

2.1. Plant material 

The range of the parameters in the sensitivity analysis was determined using an 

experimental dataset collected in a four-year-old almond orchard (Prunus dulcis Mill. 

cv. ‘Non Pareil’) at the University of California, Davis (altitude: 23 m, on average; 

38°32’16”N, 121°47’42”W).  

2.2. Sampling strategy 

All measurements were collected in the morning between 9:00 am and 12:00 pm in 

August of 2018. 64 leaves with approximately the same orientation and size were 

chosen: in the shaded zone inside the canopy (1 leaf × [6 trees × 2 dates + 4 trees × 5 

dates]; 10 < PAR < 300 µmol photons m-2 s-1), and in the sunny zone outside the 

canopy (1 leaf × [6 trees × 2 dates + 4 trees × 5 dates]; 700 < PAR < 1750 µmol 

photons m-2 s-1). 

2.3. Stomatal conductance measurement 

Gas exchange measurements were carried out using a LI-6800 portable 

photosynthesis system (LI-COR, Inc., Lincoln, NE, USA). One marked leaf was 

located in the shade and another marked leaf was situated under the sun. A portion of 

each leaf of interest was placed in a cuvette with a 1 × 3 cm aperture equipped with an 

LED light source (6800-02B, LI-COR, Inc.). The CO2 concentration inside the 

cuvette was set at 400 µmol CO2 mol-1. The values of stomatal conductance (mol air 

m-2 s-1) were recorded once there was stabilization of the measurement. The air 

temperature (Tair) and relative humidity (RH) inside the chamber, was set manually to 

match ambient conditions as measured by a handheld thermo-hygrometer probe for 

smartphones (model 800014, TFA® Dostmann GmbH & Co.KG, Wertheim, 

Germany). Similarly, the light inside the chamber was set to match the flux measured 

by the external quantum sensor of the LI-6800. 

2.4. Description of the surface energy balance model (EBM) 
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Assuming that heat storage and metabolic heat production are negligible, the energy 

balance of a leaf is given by the following equation describing a balance between 

fluxes due to absorbed radiation, convection, and latent cooling (Campbell and 

Norman, 1998): 

,   (1) 

where Rabs (W m-2) is the absorbed all-wave radiation flux (shortwave (PAR and near-

infrared radiation) + longwave (emission from sky, ground and leaves)), ɛL is the leaf 

emissivity which was assumed to be equal to 0.96 (García-Tejero et al., 2018), 

 W m-2 K-4 is the Stefan-Boltzmann constant, TL (K) is the 

temperature of the leaf, Cp = 29.3 J mol-1 K-1 is the specific heat of air, Tair (K) is the 

air temperature outside of the leaf boundary layer, λ = 44 000 J mol-1 is the latent heat 

of vaporization of water at 25 oC, ℮s(TL) and ℮s(Tair) (Pa) are respectively the 

saturation vapor pressures evaluated at the leaf or air temperature which were 

calculated using the Tetens equation (Campbell and Norman, 1998), RH is the relative 

humidity of air outside the leaf boundary layer, and Patm (Pa) is the atmospheric 

pressure which was estimated as a function of elevation following Piedallu and 

Gégou, (2007). gH (mol air m-2 s-1) is the boundary layer conductance to heat and is 

calculated by the following equation, which is applicable for wind speed u < 2.5 m s-1 

(Daudet et al., 1999): 

 .       (2) 

gM (mol air m-2 s-1) is the leaf boundary-layer conductance to moisture and is defined 

by the following equation: 

,         (3) 

where gs is the stomatal conductance of the leaf (mol air m-2 s-1). Rabs was estimated 

for a leaf fully exposed to the sky as 

,     (4) 

where RSW and RLW (W m-2) are respectively the absorbed shortwave and the 

longwave radiation fluxes. a = 0.4 is the fraction of incident shortwave radiation that 

is absorbed by the leaf (absorptivity) (Susorova et al., 2013), PAR is the absorbed 

photosynthetically active photon flux density (µmol m-2 s-1; Sager and Mc Farlane, 

1997), ɛair is the effective emissivity of the air, which was assumed to be ɛair = 0.5 (for 

clear sky; Sicart et al., 2003). The factor of 4.6 converts PAR photon flux to energy 
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flux (Sager and Mc Farlane, 1997), and the factor of 2 approximates the conversion 

from energy flux in the PAR band to total shortwave energy flux. 

For a leaf covered in liquid water, there is no stomatal limitation to transpiration and 

Eqn. 1 can be written as: 

,    (5) 

where Twet is the temperature of the wet leaf. 

For a non-transpiring leaf, the latent term is zero and Eqn. 1 can be written as:  

,        (6) 

where Tdry is the temperature of the non-transpiring leaf. 

Because of the nonlinear nature of Eqns. 1, 5, and 6, they cannot be solved 

analytically for temperature. A numerical solution for TL, Twet, and Tdry was obtained 

using the “Solver” add-in for Microsoft Excel (Office 365 ProPlus for Windows) by 

varying the temperature value in order to achieve a net energy flux residual as close to 

zero as possible.  

2.5. Crop Water Stress Indices 

Several crop water stress indices (CWSIs) were evaluated in this study, which are 

based on some combination of TL, Twet, or Tdry. A first CWSI based only on Tdry and 

TL was calculated as follows 

.        (7) 

Since Tdry ≥ TL, CWSI1 ≥ 0, with CWSI1 = 0 for a non-transpiring leaf, and CWSI1 

increasing as the crop becomes increasingly hydrated.  

A second CWSI was calculated as follows (also called CWSINI/FI by Grant et al., 

2007) 

,        (8) 

Since TL ≥ Twet, 0 ≤ CWSI2 ≤ 1 in theory. However, unless liquid water is present on 

the exterior of the leaf under investigation (e.g., rain, dew) or the vapor pressure 

deficit is zero, TL will usually be significantly greater than Twet, and thus CWSI2 is 

unlikely to reach 1 in a fully-irrigated crop. 

A third CWSI based only on Twet and TL was calculated as follows 

.        (9) 

Using this approach, CWSI3 ≥ 0 in theory, with CWSI3 increasing as the crop dries 

out.  
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Finally, a fourth CWSI derived by Jones (1999) is defined as follows 

.         (10) 

A strength of this formulation is that it is theoretically proportional to stomatal 

conductance (Jones et al., 2002), thus making its interpretation in a relative sense 

straightforward. However, it has the theoretical bounds of 0 ≤ IG ≤ ∞, and thus is not 

normalized to unity, which is because stomatal conductance is also not bounded. 

2.6. Sensitivity analysis 

A sensitivity analysis was used to quantify how the changes in environmental factors 

Tair, RH, PAR, and u (inputs) affected Tdry, Twet, TL and the four CWSIs (outputs), and 

ultimately to infer the expected performance of the CWSIs. For this analysis, a given 

combination of input parameters were used to determine the associated TL, Twet, Tdry 

values based on Eqns. 1, 5, and 6, which were then used to calculate each of the four 

CWSIs (Figure 1).  

 

 
Fig.1: Schematic representation of the inputs and outputs of the energy balance model and the crop 

water stress indices.  

 

The sensitivity analysis in this study utilized two well-known methods. The first was 

based on the one-factor-at-a-time method (OAT or OFAT method) to individually 

evaluate the impact of each input parameter on the output. The OAT method involves 

systematically varying one input variable while keeping others at their baseline 

(initial) values, and repeating for each of the other inputs in the same way.  

A limitation of the OAT method is that it can be heavily dependent on the chosen 

parameter range and reference values, and that it does not incorporate interactions 

between input variables. This was addressed by also performing a “global” sensitivity 

analysis based on the Morris Method (Morris, 1991). The Morris Method randomly 
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samples input parameters to generate a distribution of “elementary effects” of the 

input parameters on the output. Sensitivity is quantified by calculating the mean of 

absolute values, µ*, and standard deviation, σ, of the elementary effects distribution.  

The relative influence of each input parameter can be ranked based on the magnitude 

of µ*, and the relative magnitude of σ with respect to the value of µ* corresponds to 

non-linear and/or parameter interaction effects.  The calculation of µ* and σ was 

performed with the SAFE Toolbox for GNU Octave/MATLAB (Pianosi et al. 2015; 

Eaton et al., 2018), with the number of model evaluations chosen to be 2400. 

The range of parameter values in the OAT and Morris method sensitivity analyses 

was based on measurements collected during the experimental campaign in August 

2018, and are typical for the California region where almond trees are cultivated 

(Table 1). In the OAT method, the initial value of the parameters is the central value 

of the range (Table 1).  

 

3. RESULTS 

The values of Tdry, Twet, TL and the four CWSIs (CWSI1, CWSI2, CWSI3 and IG) at the 

initial parameter values (Table 1) are equal to 27.1 oC, 20.6 oC, 24.3 oC, 0.11, 0.44, 

0.18 and 0.78 (respectively) in the sun. In the shade, these values decrease and are 

equal to 20.0 oC, 17.8 oC, 19.3 oC, 0.03, 0.29, 0.09 and 0.41 (respectively). 

3.1. Sensitivity analysis of Tdry, Twet, TL and the four CWSIs to the variation of Tair 

based on the OAT method 

Figure 2 shows the simulated effect of the individual variation of Tair between 15 oC 

and 40 oC on the models’ outputs Tdry, Twet, TL and the four CWSIs in the sun and in 

the shade. Tair had a positive effect on Tdry, Twet, TL, CWSI2 and IG, and a negative 

effect on CWSI1 and CWSI3. The sensitivity of Tdry, Twet, and TL to variation in Tair 

were similar. In the sun (Fig. 2a), the variation of Tdry, Twet and TL was as large as ± 

40% over the chosen range of Tair (15-40 oC). In the shade (Fig. 2b), the temperature 

variation due to Tair was up to ± 60%. CWSI1 was the least sensitive and IG was the 

most sensitive to the variation of Tair in both the sun (Fig. 2c) and in the shade (Fig. 

2d). Furthermore, the simulation showed that the sensitivity of CWSI1, CWSI2 and 

CWSI3 to the variation of Tair was essentially the same in the sun and shade. IG was 

more sensitive to the variation of Tair in the sun than in the shade (Fig. 2c, 2d). 
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Table 1: Parameter ranges and constant values used in the sensitivity analyses. 

 

 

 
 
 
  

 Parameter/ 
Variable Definition Units Bounds Initial value 

Su
bj

ec
t t

o 
SA

 Tair Air temperature oC [15 - 40]  27.5 
RH Relative humidity % [30 - 70]  50 
PAR Photosynthetically active radiation µmol photons m-2 s-1 Sun: [700 - 1750]  

Shade: [10 - 300]  
Sun: 1225 
Shade: 155 

u Wind speed m s-1 [0 - 2]  1 
gs Stomatal conductance mol H2O m-2 s-1 Sun: [0.07 – 0.3] 

Shade: [0.02 – 0.2]  
Sun: 0.185 
Shade: 0.11 

N
ot

 su
bj

ec
t t

o 
SA

 

l Width of the leaf cm 2   
εL Emissivity of the leaf dimensionless 0.96  
εair Emissivity of the air dimensionless 0.5  
a Absorptivity dimensionless 0.4  
σ Stefan-Boltzmann constant W m-2 K-4 5.67 × 10-8   
λ Latent heat of vaporization at 25 oC J mol-1 44000   
Cp Specific heat of the air J mol-1 K-1 29.3   
fs Relative humidity of the air immediately 

above the surface evaporating site 
% 100   

z Altitude m 22   



 

18 
Scientia Horticulturae  (2020) 259, xxx-xxx 

 
Fig.2: OAT sensitivity analysis of air temperature. Percentage of variation of the simulated values of 

Tdry, Twet, and TL (a, b) and four CWSIs (c, d) due to variation in air temperature Tair in the sun (a, c) 

and shade (b, d). 

 
Fig.3: OAT sensitivity analysis of relative humidity. Percentage of variation of the simulated values of 

Tdry, Twet, and TL (a, b) and four CWSIs (c, d) due to variation in relative humidity RH in the sun (a, c) 

and shade (b, d). 
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3.2. Sensitivity analysis of Tdry, Twet, TL and the four CWSIs to the variation of RH 

based on the OAT method 

Figure 3 shows the simulated effect of the variation of RH between 30 % and 70 % on 

the models’ outputs Tdry, Twet, TL and the four CWSIs in the sun and in the shade. RH 

had a positive effect on Twet, TL, CWSI2 and IG and a negative effect on CWSI1 and 

CWSI3. Tdry is not sensitive to the variation of the relative humidity at constant Tair 

because there is no evaporation (Eqn. 6). The sensitivity of TL to the variation of RH 

was up to ± 5% and was the same in the sun and shade (Fig. 3a, 3b). Twet was the most 

sensitive output to the variation of RH and the effect was higher in the shade than in 

the sun. In the sun, the variation of Twet to the variation of RH was up to ± 15%. In the 

shade, it could reach up to about ± 20%. The CWSIs showed the same variations in 

the sun and in the shade over the range of RH considered. 

3.3. Sensitivity analysis of Tdry, Twet, TL and the four CWSIs to the variation of 

PAR based on the OAT method 

 
 

Fig.4: OAT sensitivity analysis of radiation. Percentage of variation of the simulated values of Tdry, 

Twet, and TL (a, b) and four CWSIs (c, d) due to variation in photosynthetically active radiation PAR in 

the sun (a, c) and shade (b, d). 
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Figure 4 shows the simulated effect of the variation of PAR between 700 and 1750 

µmol photons m-2 s-1 in the sun and between 10 and 300 µmol photons m-2 s-1 in the 

shade on the outputs Tdry, Twet, TL and the four CWSIs. PAR had a positive effect on 

all models’ outputs. The change in Twet, TL and Tdry over the chosen range of PAR 

were about ± 7 %, ± 10% and ± 13 % in the sun (Fig. 4a). The changes decreased in 

the shade to about ± 4% for Tdry and TL and about ± 2% for Twet (Fig. 4b). The 

sensitivities of the four CWSIs to PAR were relatively low (variation up to about ± 

0.05) in the sun (Fig. 4c) and in the shade (Fig. 4d). 

3.4. Sensitivity analysis of Tdry, Twet, TL and the four CWSIs to the variation of u 

based on the OAT method 

Figure 5 shows the simulated effect of the variation of u between 0 and 2 m s-1 in the 

sun and in the shade on the models’ outputs Tdry, Twet, TL and the four CWSIs.  

 
Fig.5: OAT sensitivity analysis of wind speed. Percentage of variation of the simulated values of Tdry, 

Twet, and TL (a, b) and four CWSIs (c, d) in the sun (a, c) and shade (b, d) due to variation in wind 

speed u. 

 

In the sun, u had a positive effect on Tdry, TL and CWSI3 and a negative effect on Twet, 

CWSI1, CWSI2 and IG (Fig. 5a, 5c). In the shade, u had a positive effect on Tdry, Twet, 

TL, CWSI3, CWSI1 and a negative effect on CWSI2 and IG (Fig. 5b, 5d). In the sun, the 
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leaf temperatures were less influenced by the wind speed than in the shade (variation 

of the leaf temperatures < ± 5 %; Fig. 5a, 5b). In contrast, in the shade (Fig. 5b), for u 

> 1 m s-1, the sensitivity of Twet to the variation of u reached up to 5% and about 10 % 

for Tdry and TL. For u < 1 m s-1, the sensitivity of Twet to the variation of u reached as 

much as -15% and about -30 % for Tdry and TL. CWSI1 and CWSI3 showed a low 

sensitivity to the variation of u between 0 and 2 m s-1 in the sun and shade. In contrast, 

IG had a high sensitivity to the variation of u in the sun, which was higher for the 

values of u < 1 m s-1 (Fig. 5c). In the shade, IG had a reduced sensitivity to the 

variation of u compared to sunny conditions (Fig. 5d). CWSI2 had moderate sensitivity 

to u in both the sun and shade, with sensitivity decreasing in the shade.  

3.5. Sensitivity analysis of Tdry, Twet, TL and the four CWSIs to the variation of gs 

based on the OAT method 

Figure 6 shows the simulated effect of the individual variation of gs between 0.07 and 

0.3 mol m-2 s-1 in the sun and between 0.02 and 0.2 mol m-2 s-1 in the shade on the 

models’ outputs Tdry, Twet, TL and the four CWSIs. 

 
Fig.6: OAT sensitivity analysis of stomatal conductance. Percentage of variation of the simulated 

values of Tdry, Twet, and TL (a, b) and four CWSIs (c, d) due to variation in stomatal conductance gs in 

the sun (a, c) and shade (b, d). 
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gs does not influence Tdry and Twet (see Eqn. 1, 5 and 6). The effect on TL is negative 

and is more important in the sun than in the shade (Fig. 6a, 6b). For the CWSIs, gs has 

a positive effect on CWSI1, CWSI2, IG and a negative effect on CWSI3. The 

sensitivities of CWSI1 and CWSI3 to the variation of gs were very low, relatively low 

for CWSI2, and high for IG. The impact of variation of gs in the shade and in the sun 

on the CWSIs were the same, except for IG where the sensitivity to the variation of gs 

was higher in the sun than in the shade (Fig. 6c, 6d).    

3.6. Effect of environmental parameters and stomatal conductance on Tdry, Twet, TL 

– Results of Morris method 

Figure 7 summarizes the results of the sensitivity analysis based on the Morris method 

for Tdry, Twet and TL in sunny and shaded conditions. Unsurprisingly, Tdry, Twet and TL 

were principally driven by Tair (highest µ*) in the sun (µ* > 17; Fig. 7a, 7c, 7e) and 

shade (µ* > 21; Fig. 7b, 7d, 7f). The influence of Tair on these three variables was 

approximately linear because the magnitude of σ was at least an order of magnitude 

less than µ* (Menberg et al., 2016). In the sun σ/µ* for Tair was 0.05, 0.11 and 0.11, 

and in the shade σ/µ* was 0.03, 0.07 and 0.04 for Tdry, Twet and TL respectively. This 

result was in agreement with the curves obtained from the OAT method shown in Fig. 

2a, 2b, which suggested an approximately linear relationship between surface 

temperatures and Tair. In the shade, the parameters RH, gs, PAR and u had a lower 

effect (µ* < 7) than Tair (µ* > 15). In the sun, Tdry and TL were significantly 

influenced by PAR (µ* ≈ 18 for Tdry and µ* ≈ 11 for TL) and more weakly influenced 

by the other parameters (RH, gs, u).  Additionally, Twet was weakly influenced by 

parameters other than Tair in the sun (µ* < 7; Fig. 7c). Except for Tair, the effects of 

the parameters on the models’ outputs in the sun and shade were monotonic or almost 

monotonic (0.1 < σ/µ* < 0.7; Fig. 7a-f), which was in agreement with the curves 

obtained from the OAT method shown in Fig. 3-6 (a, b). u showed the highest value 

of σ (Fig. 7), which corresponds to the highly nonlinear curves from the OAT method 

shown in Fig. 5. 

1.1. Effect of environmental parameters and stomatal conductance on CWSIs – 

Results of Morris method 

Figure 8 summarizes the results of the sensitivity analysis based on the Morris method 

for CWSI1, CWSI2, CWSI3 and IG in sunny and shaded conditions. Although Tair was 

the most important parameter for Tdry, Twet, and TL, this was not the case for the 

CWSIs. In the sun, CWSI1 was primarily influenced by u and gs (µ* = 0.114 and  
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Fig.7: Global sensitivity analysis of temperature using the Morris method. Mean (µ*) and standard 

deviation (σ) of the elementary effects of Tair, RH, PAR, u, and gs on Tdry (a, b), Twet (c, d) and TL (e, f) 

in the sun (a, c, e) and shade (b, d, f). 
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0.113, respectively) and secondarily by PAR (µ* = 0.09) (Fig. 8a). Their effects on 

CWSI1 were monotonic (0.1 < σ/µ* < 0.5). Shady conditions decreased the impact of 

u, gs, PAR and Tair but increased the effect of RH (Fig. 8e). Their effects remained 

approximately linear and monotonic, except for u in which σ/µ* > 1 which suggests 

that this parameter exhibit either non-linear behavior, interaction effects with other 

parameters, or both. CWSI2 was driven mainly by gs and secondarily by u in the sun 

(highest µ* of 0.312 and 0.268, respectively; Fig. 8b) and by u in the shade (µ* = 

36.1; Fig. 8f). In the sun, the effect of all parameters was monotonic or almost 

monotonic (0.1 < σ/µ* < 0.6; Fig. 8b). In the shade, all parameters showed a ratio 

σ/µ* > 1 which suggested that the parameters exhibited either non-linear behavior, 

interaction effects with other parameters, or both. In the sun, all parameters had a 

similar influence on CWSI3, and their effects were monotonic or almost monotonic 

(0.1 < σ/µ* < 0.7; Fig. 8c). In the shade, CWSI3 was driven mainly by RH and 

secondarily by Tair. The other parameters had a small effect on CWSI3. RH and Tair 

had monotonic or almost monotonic effects (0.1 < σ/µ* < 0.7; Fig. 8g).  

Finally, IG was driven primarily by gs in the sun and secondarily by u. The other 

parameters had a minimal influence on the value of IG (µ* < 1). In the shade, IG was 

driven primarily by u (µ* = 25.1). The other parameters had a relatively small impact 

(µ* < 8). In the shade, the effects of all parameters were monotonic or almost 

monotonic (0.1 < σ/µ* < 1). In the sun, they had a ratio σ/µ* >> 1 which suggested 

that the parameters exhibited either non-linear behavior, interaction effects with other 

parameters, or both.    

 

2. DISCUSSION 

The use of leaf temperature and crop water stress indices to evaluate the water status 

of plants and manage irrigation requires consideration of ambient environmental 

factors, and interpretation requires a linkage to the stomatal conductance. 

Accordingly, we will first discuss the results of the two sensitivity analyses conducted 

in this study based the effects of environmental conditions and the stomatal 

conductance on Tdry, Twet, TL and four CWSIs. The sensitivity analysis results were 

used to compare the different CWSIs and ultimately assess the theoretical 

performance of the CWSIs. 
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Fig.8: Global sensitivity analysis of CWSIs using the Morris method. Mean (µ*) and standard deviation (σ) of the elementary effects of Tair, RH, PAR, u, and gs on CWSI1 (a, 

e), CWSI2 (b, f), CWSI3 (c, d) and IG (d, h) in the sun (a, b, c, d) and shade (e, f, g, h).
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2.1. Local vs. global sensitivity analysis methods 

The advantage of the analysis based on the Morris method is that it provides a global 

view by examining parameter interactions, which is not taken into account by the 

OAT method. In general, the OAT method provided insight into the magnitude of the 

effect of the input parameters (Tair, RH, PAR, u, and gs) on the models’ outputs (Tdry, 

Twet, TL, CWSI1, CWSI2, CWSI3 and IG), which Morris’ method did not provide. Thus, 

the use of these two methods for sensitivity analysis provided complementary 

information.  

2.2. Effect of environmental parameters and stomatal conductance on Tdry, Twet 

and TL 

The sensitivity analysis showed that increasing PAR (i.e., from shady to sunny 

conditions) increases the interactions between environmental parameters that 

influence Tdry, Twet and TL models because their σ increases relative to µ* (Fig. 7). Tdry 

was more sensitive than Twet and TL to PAR variation, although PAR still had a 

significant effect on Twet and TL (Fig. 4a, 4b, 7a, 7b). The sensitivity of leaf 

temperature to PAR was highlighted by Agam et al. (2013) and Jones et al. (2009). 

Agam et al. (2013) observed that variation in CWSI due to abrupt changes in 

radiation intensity was much larger in water-stressed trees compared to well-watered 

trees. In their experiments, when the radiation flux decreased from 700 to 200 W m−2, 

temperatures of well-watered and stressed trees declined by 2 oC and 4.5 oC 

respectively, which is comparable to the reductions found by Jones et al. (2009).  

Not surprisingly, the sensitivity analysis also showed that Tair has a strong effect on 

leaf temperatures (Woods et al., 2018). However, unlike Woods et al. 2018, the 

analysis herein indicated that leaf temperature was most sensitive to air temperature 

rather than wind speed. It is possible that this is because they considered a range of 

wind speeds from 0 to 5 m s-1 along with a linear model for boundary-layer 

conductance that does not saturate at large wind speeds. In the shade, Tdry, Twet and TL 

were all dominated by the air temperature. This would indicate that sunny conditions 

are likely necessary to capture the effects of water status within temperature 

measurements because temperatures are not sensitive to gs in the shade under typical 

conditions. Intuitively, this makes sense because increasing the radiative term in the 

energy balance amplifies the latent cooling term and thus the sensitivity of 

temperature to gs. Previous work has used the level of variability in leaf temperature 

within a thermal image as a measure of water stress (Fuchs 1990; Jones et al. 2002; 
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González-Dugo et al. 2006), which is based on the principle that varying leaf angles 

creates variability in radiation, and that the sensitivity of leaf temperature to radiation 

increases with increasing water stress. The results of the present study would tend to 

support this idea, but also suggests that the discrepancy between the temperature of 

sunlit and shaded leaves within a thermal image increases with increasing water 

stress, and thus the level of temperature variability is also likely to capture this effect.  

2.3. Effect of environmental parameters and stomatal conductance on the four 

CWSIs 

The ultimate goal in formulating a CWSI is to derive an appropriate normalization of 

the measured leaf temperature that removes the impacts of ambient environmental 

conditions (namely PAR, RH, Tair, and u) and leaves only a dependence on gs and thus 

water stress. While many CWSIs have been previously proposed, their effectiveness 

at performing this normalization has typically not been directly investigated 

theoretically. Jones (1999) examined the impact of u on several CWSIs including IG 

and found that u had a significant influence on all CWSIs considered, which was also 

the case for all CWSIs investigated in this work (Fig. 8). Similarly, O’Toole and 

Hatfield (1983) found CWSI2 to be very sensitive to u, which made estimating the 

CWSI from meteorological measurements problematic in some cases. For both CWSI2 

and IG, the most important parameters (in the sun) were u and gs with all other 

parameters playing a lesser role. Since the boundary-layer conductance gH depends 

only on u, ang gs and gH together control the water flux, it makes sense that these 

CWSIs should be most sensitive to u and gs. In contrast, under sunny conditions 

CWSI1 was most sensitive to u, gs, and PAR, and CWSI3 was sensitive to all 

parameters. This result indicates that the normalizations used in CWSI1 and CWSI3, 

which use only one of either Twet or Tdry, were ineffective at removing sensitivity of 

the CWSI to environmental conditions. Intuitively, one would expect that effective 

normalization would require both Twet and Tdry in order to account for both the effects 

of radiation and convection (Tdry) as well as evaporation (Twet) on the leaf temperature 

TL. However, recent work by (Poirier-Pocovi et al., submitted) found that both Twet 

and Tdry could be easily and accurately estimated from the temperature of a dry piece 

of green paper under a wide range of environmental conditions, which suggests that a 

proper normalization may not necessarily require an evaporating reference surface. 

The Morris sensitivity analysis (Fig. 7) may support this idea, as it indicated that Twet 

was determined mainly by Tair, and only to a lesser extent by RH. If this is indeed the 
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case that TL is not particularly sensitive to RH, one could reasonably expect that 

CWSI1, which normalizes using only Tdry, would perform well. While CWSI1 does a 

fairly good job at removing the effect of RH, it increased sensitivity to PAR in 

comparison with CWSI3 and IG. This could be because Tdry is also very sensitive to 

PAR (Fig. 7), and thus basing the CWSI normalization (particularly the denominator) 

on only Tdry appears to increase its sensitivity to PAR. 

In shady conditions, all CWSIs performed poorly, with relatively low sensitivity to gs 

and high sensitivity to all environmental parameters. Agam et al. (2013) also observed 

that CWSI2 had a much weaker correlation with gs under shady versus sunny 

conditions. In the absence of strong radiation forcing, the leaf temperature is primarily 

determined by the air temperature (Fig. 7) and thus evaporative cooling plays a lesser 

role. As such, leaf temperature is generally not likely to be a good indicator of plant 

water status as inferred through gs. 

Interestingly, in shady conditions IG was highly sensitive to u, with all other 

parameters playing a lesser role. Because of this, it is possible that some variation of 

IG in the shade could be used to develop a normalization that removes the strong and 

undesirable effect of u in CWSI2 and IG. However, this requires experimental testing 

since, although IG is deemed “sensitive” to u in the shade in a relative sense based on 

the Morris sensitivity parameters, all energy fluxes are relatively small in the shade 

and thus it is unclear whether the signal from u would be robust. However, the results 

of the OAT analysis suggest that TL has high absolute sensitivity to u in the shade, in 

fact more so than in the sun (Fig. 5).  

 

3. CONCLUSION AND RECOMMENDATION 

Our results suggest several recommendations for infrared measurement of leaf 

temperature and the use of CWSIs to estimate plant water status. We considered the 

best CWSI to be one that has maximal sensitivity to gs and minimal sensitivity to 

environmental conditions, which in terms of the Morris sensitivity analysis, would be 

the CWSI in which the µ* value of gs was largest relative to the µ* of environmental 

variables. Additionally, if a variable’s σ value is comparable in magnitude to its µ* 

value, caution is required in interpreting its sensitivity as it could indicate the presence 

of non-linearities or interactions that could make results dependent on the choice of 

parameter ranges. 
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CWSI2 and IG showed similar performance in terms of the sensitivity analysis. Both 

were most sensitive to gs and u, with other environmental variables playing a lesser 

role. One could argue that IG is preferable based on the desirable trait that it is 

proportional to gs and thus making interpretation with respect to plant water status 

more straight-forward. However, CWSI2 was slightly more sensitive to gs in 

comparison with other variables than IG including u. Additionally, the ratio of σ/µ* 

for u in IG is relatively large indicating the possibility of a non-linear impact, whereas 

CWSI2 has the desirable trait that all environmental variables appear to have a linear 

impact. Future work could further improve calculation of CWSIs by focusing on 

developing a normalization that can remove the impact of u. 

According to the results of the sensitivity analysis, it is not recommended measure 

CWSIs in shaded conditions, but rather to perform measurements in full sun (i.e., 

PAR>700 µmol m-2 s-1). The lack of strong radiative forcing increases the impact of 

other environmental variables such as Tair and decreases the impact of gs. 
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Highlights: 

• Wet reference temperature was well-predicted based on temperature of a dry 

surface. 

• Wet and dry leaf temperatures were linearly related to the temperature of 

green paper. 

• CWSI could be calculated by modeling the wet and dry leaf temperature. 

• The same reference can be used in both the sun and shade and for different 

species. 
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ABSTRACT  

Leaf temperature (TL) is tightly coupled with the rate of transpirational water loss 

from the leaf. The temperatures of wet and dry reference leaf surfaces (Twet and Tdry, 

respectively) are commonly used to normalize temperature measurements for current 

environmental conditions and then calculate a crop water stress index (CWSI).  

Since it is often impractical to directly measure Tdry and Twet, the goals of this work 

were to: i) determine a suitable artificial reference surface that makes application of 

the CWSI faster and easier in the field, ii) develop a model for Tdry and Twet based on 

the reference surface temperature that allows for calculation of standard CWSIs, iii) 

test the technique for a range of weather conditions and tree species, and iv) analyze 

the sensitivity of these two models to Tdry and Twet, and their impact on the estimation 

of four different CWSIs. 

Our results showed that both Tdry and Twet are linearly related to the thermal 

temperature of green paper across a wide range of environmental conditions. 

Although there was a significant effect of the light conditions on Tdry and Twet, the 

same models could be used in both the sun and shade to relate Tdry and Twet to Tref. 

Moreover, results indicated that a new CWSI dependent only on TL and Twet was least 

sensitive to errors in Twet, but most sensitive to TL.  

 

Keywords: Irrigation scheduling, crop-water status, thermal imaging, Prunus dulcis  
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1. INTRODUCTION 

Thermal imaging can be used to measure leaf or canopy temperatures, which can then 

be used to estimate plant water status and therefore aid in irrigation scheduling of 

various crops (Jones et al., 2002; Ballester et al., 2013; Struthers et al., 2015; 

Gerhards et al., 2016; Craparo et al., 2017; García-Tejero et al., 2017; Gutiérrez et al., 

2018). Plants lose large amounts of water through their stomatal pores while taking up 

CO2 for photosynthesis. When plant water availability declines, stomata close to 

conserve water (Hopkins, 2003), reducing evaporative cooling and increasing leaf 

temperature. Thermal imaging can then be employed to measure leaf temperature 

responses to water stress conditions, and thereby infer impacts on transpiration and 

stomatal behavior. In addition, thermal imaging provides measurements of the 

temperature of whole canopy, and thus has the potential for fast spatio-temporal 

measurements and water status assessment on a whole plant basis. However, the 

interpretation of thermal imagery is complicated by the fact that it aggregates many 

leaves with different environmental conditions and orientations, which may affect the 

measurement. 

In addition to transpiration rate, canopy temperature is also strongly influenced by the 

local environmental conditions (e.g., air temperature, wind speed, radiation; Campbell 

and Norman, 1998). In order to remove the effects of environmental conditions from 

leaf temperature measurements and isolate water status effects, the temperature must 

be normalized, which is commonly performed using both well-watered and non-

transpiring reference crop temperatures (Idso, 1982). The well-watered and non-

transpiring crop temperatures, respectively, provide a theoretical lower and upper 

bound for possible actual leaf surface temperatures given identical environmental 

conditions. These reference temperatures allow for the formulation of a dimensionless 

temperature index, commonly called the “crop water stress index” or CWSI. Many 

CWSIs have been proposed that use some combination of wet and dry reference 

surface temperatures, each with the goal of increasing sensitivity of the index to water 

stress while decreasing sensitivity to environmental conditions (e.g., Jones, 1999; 

Grant et al., 2007; Costa et al., 2013; García-Tejero et al., 2016; Cohen et al., 2017; 

Poirier-Pocovi and Bailey, 2020). 

While theoretically convenient, it is rarely possible in practice to have access to well-

watered and non-transpiring crop temperatures for the same crop under identical 
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environmental conditions. Jones et al. (2002) thus compared various types of surfaces 

to replace the reference crop temperatures, and concluded that the temperatures of real 

leaves from the same plant sprayed with water (Twet) or covered in petroleum jelly to 

stop transpiration (Tdry), provided effective reference temperatures because of the 

similar radiometric and aerodynamic properties to the actual leaves being studied. 

Since wet reference leaves dry out quickly, Maes et al. (2016) presented and 

evaluated a new artificial wet reference surface that could stay wet for several days. 

The reference leaf was fabricated by knitting a cotton cloth around a steel wire frame, 

where the bottom part of the cloth was put in a water bottle wrapped with aluminum 

foil to act as a wick.  

To avoid having to perform reference temperature measurements altogether, previous 

workers have modeled the values of Twet and Tdry, either arbitrarily by adding X °C (an 

empirical estimate dependent on vapor pressure deficit or a constant offset) to the air 

temperature (Cohen et al., 2005, 2017; Bellvert et al., 2015), or theoretically by using 

the energy balance equation (Alchanatis et al., 2010; Möller et al., 2007). The 

theoretical energy balance approach requires knowledge of complex parameters (e.g., 

net radiation of the leaf, the resistance to convective heat transfer, the slope of the 

saturation vapor-pressure curve). In practical application of this approach, the 

experimenters or producers are often unable to provide input variables in the model 

without expensive equipment that requires technical expertise.  

The primary objective of this work was to determine a surrogate reference surface 

temperature that could be used along with a model to more easily estimate Tdry and 

Twet values without any additional measurements. Any error in the estimation of Tdry 

and Twet will propagate to the calculation of the CWSI. Thus, we studied four different 

CWSI formulations, including two new CWSIs, to determine whether certain CWSI 

formulations were able to minimize sensitivity to errors in the estimation of Tdry and 

Twet while maximizing sensitivity to water status. The specific novel aims of this study 

were (i) to develop a model that relates the temperature of a suitable artificial 

reference surface (Tref) to Tdry and Twet, thus making the application of a CWSI faster 

and easier in the field, (ii) to test the model for a wide range of weather conditions and 

tree species, and (iii) to analyze the sensitivity of these models for Tdry and Twet and 

their impact on the estimation of four different CWSIs. 
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2. MATERIALS AND METHODS 

2.1 Plant material 

This study was performed in 2018 on twelve almond trees (Prunus dulcis Mill. cv. 

‘Non Pareil’, grafted onto Krymsk 86 rootstock, n = 12) that were four-years-old in an 

experimental orchard at the University of California, Davis, located in Northern 

California (average altitude: 23 m; 38°32’16” N, 121°47’42” W). At the experimental 

site, full bloom occurred during week 7 of the calendar year (16 Feb. 2018). The 

almond trees were watered once per week (between Saturday and Sunday) with a 

micro sprinkler system. 

To verify the general applicability of the model, several additional woody species 

with hypostomatous leaves were selected: Prunus persica, Nerium oleander, Quercus 

sp., Olea europaea L. and Ulmus hybrid ‘Frontier’. These species were all located on 

the campus of the University of California, Davis within a 3.7 km radius of the above-

mentioned almond orchard. 

2.2 Sampling strategy 

A number of thermal measurements were performed on six fully developed leaves 

with approximately the same orientation and size for each of the tree species: three in 

the shaded zone inside the canopy (10 < PAR < 300 µmol photons m-2 s-1), and three 

in the sunny zone outside the canopy (700 < PAR < 1750 µmol photons m-2 s-1). On 

each day of measurements, six new leaves were selected. Measurements were 

performed during four periods: 15 June 2018 (Julian Day Number (JDN) 166, on U. 

hybrid ‘Frontier’ only), from 18 June 2018 to 22 June 2018 (JDN 169-173, on P. 

persica, N. oleander, Q. sp., and O. europa L., U. hybrid ‘Frontier’), from 30 July 

2018 to 3 August 2018 (JDN 211-215, all species) and from 27 August 2018 to 31 

August 2018 (JDN 239-243, P. dulcis only). All measurements were collected 

uniformly in the morning between 9:00 am and 12:00 pm. We chose this time period 

because the environmental conditions covered a wide range of values over a relatively 

short time period. This high variability was desirable because it increased the domain 

of model validity. 

2.3 Thermal imaging 

Leaf temperatures were measured using thermal images obtained using a FLIR 

camera (FLIROne® Pro for iOS, FLIR, Wilsonville, OR, USA) that was connected to an 

iPhone 6 (Apple, USA). The camera produces thermal images of 480 ´ 640 pixels 
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(Horizontal ´ Vertical), with an accuracy of ± 0.1 °C. Horizontal and vertical fields of 

view for the thermal images are 55° ± 1° and 43° ± 1°, respectively. For the same 

leaves, two thermal pictures were collected: one from the top surface and one from 

the bottom surface of the leaves. In order to maximize thermal contrast between the 

leaf and background while minimizing influence of the background on the 

temperature of the leaf, the background surfaces were chosen to be a sheet of black 

paper (Canford card 8.5”x11”, Jet Black) for shady conditions, and “uncrumpled” 

aluminum foil for sunny conditions (Fig. 1).  

 

 
Fig. 1: Illustration of the experimental apparatus for collecting thermal images in shady (a) and sunny (b) 

conditions, which consists of green (①), white (②) and black (③) reference surfaces, leaves to measure Tdry 

(④), TL (⑤) and Twet (⑥), crumpled (⑦) and uncrumpled (⑧) aluminum foil sheet. The real emissivity of the 

“uncrumpled” aluminum foil is very low (0.09 – 0.04; FLIR, 2017). Because we have taken emissivity values 

greater than 0.61 for all objects in the picture, the thermal temperature of the “uncrumpled” aluminum foil 

therefore appeared unrealistically low (-31 °C). 

 

The reflectance temperature required for calibration of the thermal image was 

estimated to be the radiative temperature of a “crumpled” aluminum foil sheet placed 

next to the object being viewed, with its emissivity set at 1.0. Thermal images were 

processed using FLIR Tools software (version 6.4.18039.1003, FLIR, Wilsonville, 

OR, USA). The effective leaf emissivity was measured using the method described in 

detail in the user’s manual of FLIR ETS3xx series camera (FLIR®, 2017). The 

average emissivity from several replicate measurements yielded the following values: 

0.87 for P. persica (n = 11), 0.61 for P. dulcis (n = 13), 0.81 for U. hybrid ‘Frontier’ 

(n = 6) and Q. sp. (n = 6), 0.94 for N. oleander (n = 6), and 0.98 for O. europa L (n = 
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6). The measured leaf emissivity value was also used for all objects in the picture to 

build the model. Although specifying the correct emissivity for each surface is 

important for accurate measurement of absolute temperature, the fact that the same 

emissivity was used for all surfaces in the image meant that the emissivity value 

cancels out when developing the model to relate the leaf temperature to reference 

temperatures in the image. It was verified that changing emissivity values had no 

effect on the final model results.  

2.4 Wet and dry leaf reference surface temperature 

The reference surfaces temperatures under wet and dry conditions were determined by 

measuring the temperature of an adjacent leaf that was sprayed with water on both 

sides approximately 1 min before the imaging. The dry leaf reference surface Tdry was 

prepared by covering an adjacent leaf in petroleum jelly (Vaseline, 100% pure 

petroleum jelly, Unilever, US) on both sides of the leaf (Jones et al., 2002). For each 

picture, three adjacent leaves were chosen, two representing the reference surface 

temperature (Twet and Tdry) and one representing the temperature of the leaf of interest 

(TL). 

Several types of surfaces were selected as candidates for the approximation of Twet 

and Tdry. The temperatures of sheets of paper (Tref) of color green (Trefgreen, Canford 

card 8.5”x11”, Emerald Green), black (Canford card 8.5”x11”, Jet Black) and white 

(Canford card 8.5”x11”, Snow White) paper were measured to test their ability to 

represent the “true” wet and dry temperatures (Fig. 1).  

2.5 Crop water stress indices 

Several potential crop water stress indices (CWSIs) were considered in this study. The 

different formulations of the CWSI were based on different normalizations of TL 

based on Twet and Tdry. These different normalizations change the influence of the 

environmental conditions on the CWSI value (Poirier-Pocovi and Bailey, 2020), 

which could also change the impact of errors in estimation of Twet and Tdry on the 

calculated CWSI.  

A first CWSI based only on Tdry and TL was calculated as follows (Poirier-Pocovi and 

Bailey, 2020) 

,         (1) 

where Tdry is the temperature of a dry reference leaf surface (non-transpiring leaf, oC) 

and TL is the temperature of the leaf of interest (oC). Since Tdry ≥ TL, CWSI1 ≥ 0, with 
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CWSI1 = 0 for a non-transpiring leaf, and CWSI1 increasing as the leaf becomes 

increasingly hydrated.  

A second CWSI was calculated as follows (also called CWSINI/FI by Grant et al., 

2007) 

,         (2) 

where Twet is the temperature of a wet reference leaf surface (oC). Since TL ≥ Twet and 

Tdry ≥ TL, 0 ≤ CWSI2 ≤ 1 in theory. However, unless liquid water is present on the 

exterior of the leaf under investigation (e.g., rain, dew) or the vapor pressure deficit is 

zero, TL will usually be significantly greater than Twet, and thus CWSI2 is unlikely to 

reach a value of 1 in a fully-irrigated crop. 

A third CWSI based only on Twet and TL was calculated as follows (Poirier-Pocovi and 

Bailey, 2020) 

.         (3) 

Using this approach, CWSI3 ≥ 0 in theory, with CWSI3 increasing as the crop dries 

out.  

Finally, a fourth CWSI derived by Jones et al., 2002 is defined as follows 

.          (4) 

A strength of this formulation is that it is theoretically proportional to stomatal 

conductance (Jones et al., 2002), thus making its interpretation in a relative sense 

straightforward. It also has the same lower theoretical bounds as CWSI2, but has upper 

bounds of infinity (i.e., 0 ≤ IG ≤ ∞).  

Between 9:00 am and 12:00 pm, the environmental conditions varied strongly and 

have a high influence on the real value of the CWSI. For this reason, the percentage of 

the variation of the CWSI is considered rather than the absolute value. 

2.6 Meteorological data 

Although not directly used in the calculation of CWSIs, local meteorological data 

were collected and reported to characterize the climate at the experimental site and 

ambient environmental conditions during the thermal measurements. Daily average 

relative humidity (RH, %), daily minimum and maximum air temperatures (min Tair 

and max Tair, oC) were obtained from weather station no6 of the California Irrigation  
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Fig. 2: Air temperature (Tair; a) and relative humidity (RH; b) recorded adjacent to each individual leaf (data 

from the thermo-hygrometer probe) during each measurement period (JDN: Julian Day Number). Data are 

separated by species and light conditions (sunlit or shaded), but not by site. All data were recorded in the morning 

between 9 am and 12 pm. 
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Management Information System (CIMIS) network (cimis.water.ca.gov), which was 

located about 1.6 km from the experimental site for P. dulcis and about 2.1 km from 

the other species. In order to characterize the range of environmental conditions under 

which the models for Twet and Tdry were developed and tested, data were collected 

adjacent to the leaf. The air temperature (Tair, oC) and the relative humidity of the air 

adjacent to the leaf were measured a few seconds after the thermal imaging with a 

thermo-hygrometer probe for smartphones (model 800014, TFA® Dostmann GmbH 

& Co.KG, Wertheim, Germany) in order to characterize the environment in the 

vicinity of the leaf (Fig. 2, 5g, 5h), and to correct the thermal images for absorption of 

longwave radiation due to the atmosphere. 

2.7 Statistical analysis 

Linear and nonlinear regressions between Tdry, Twet and the reference paper surface 

temperature (black, green or white), or Tair were fitted to the data using SIGMAPLOT 

version 13.0 for Windows (SPSS Inc., San José, CA, USA). The goodness-of-fit of 

the resulting regressions (models) were evaluated using the following three statistics: 

(1) The coefficient of determination, adjusted for estimated parameters (Hill and 

Lewicki, 2007; Dincer and Topuz, 2015) to yield an unbiased value, R2adj and is 

defined as 

,       (5) 

n is the sample size, k is the number of independent variables in the regression 

equation and R2 is the coefficient of the determination defined as 

,         (6) 

n is the sample size,  is the mean of observed values, Oi and Pi are the ith observed 

and ith corresponding model-predicted variables, respectively. 

(2) The index of agreement d is a standardized measure of the degree of model 

prediction error and is defined by Willmott (1982) as 

,         (7) 

, , and 0 ≤ d ≤ 1. A value of 1 indicates perfect agreement, 

while 0 indicates a random relationship.  

(3) The quadratic mean deviation estimated from measured values, or root mean 

squared error, RMSE (Janssen and Heuberger, 1995) and is defined as 
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.        (8) 

JAMOVI (Version 0.9, free computer software, retrieved from 

https://www.jamovi.org) was used to compare the slopes and y-intercepts of the linear 

regressions with analysis of covariance (ANCOVA) (Engqvist, 2005). SIGMAPLOT 

version 13.0 for Windows (SPSS Inc., San José, CA, USA) was used to perform the 

normality test and to compare the means with adapted analysis of variance (ANOVA, 

Tukey test). 

For model parameterization, we used three-quarters of the presented data for P. dulcis 

(three trees of P. dulcis were chosen at random (n = 96)). The rest of the data (the 

remaining tree of P. dulcis (n = 32)) and measurements from other species (P. 

persica, N. oleander, Q. sp., O. europaea, U. hybrid ‘frontier’ (n = 102)) were used 

for a model validation. The models’ predictive capacity was evaluated by performing 

validation based on data sets that were not used to parameterize the model (see 

above), and quantifying errors using the same three indices: R2adj, d and RMSE, 

hereafter referred to as the RMSE of prediction (RMSEP) and d of the prediction (dP), 

respectively. 

2.8 Sensitivity analysis 

Microsoft Excel was used to study the sensitivity of the CWSIs by changing one-

factor-at-a-time (OFAT or OAT method), to see what effect this produces on the 

output (Pianosi et al., 2016). This method involves changing one input variable, 

keeping others at their baseline (nominal) values, then, returning the variable to its 

nominal value, and repeating for each of the other inputs in the same way. For our 

models, we changed only the thermal temperature of the reference surface measured 

by thermal imaging to see its effect on the outputs (Tdry, Twet and CWSI). TL remained 

fixed in the OAT method and its value is the measured data.  

RStudio version 1.1.463 was used to calculate the sensitivity indices: the main (first-

order) and the total effects of Sobol sensitivity analysis (Monte Carlo Estimation of 

Sobol' Indices (formulas of Martinez (2011) (Martinez, 2011; Baudin et al., 2016)). 

For the parameters in the Sobol sensitivity analysis, we took the ranges of temperature 

values ([20 - 45] oC) that are typical for California, USA region where almond trees 

are cultivated. We assumed that the parameters used to calculate the CWSIs are 

independent. The number of model evaluations was equal to 106. 

3. RESULTS 
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3.1 Air temperature and relative humidity during the experimental period 
Variations of daily average relative humidity, daily minimum and maximum air 

temperatures (average RH, min Tair and max Tair) between 1 February 2018 (Julian 

Day Number, JDN 32) and 31 August 2018 (JDN 243) are shown in Fig. 3.  

 
Fig. 3: Time courses of daily average relative humidity (RH, %; a), daily minimum and maximum air temperatures 

(min Tair and max Tair, respectively; b) near the experimental site in Davis, California (USA, CIMIS weather 

station). The black arrow indicates the date of full bloom. The grey boxes or the vertical dot-dashed grey line 

indicate the measurement periods. 

 

In 2018, full bloom took place around 16 February 2018 just before a period of 

freezing (from JDN 50 to JDN 63). After that period of freezing, the minimum and 

maximum air temperatures increased: the maximum temperature of 39.3 °C was 

reached on JDN 206. The average daily minimum and maximum air temperatures 

during the experimental period (from JDN 166 to JDN 243) were 14.1 ± 2.1 °C (n = 

78) and 32.9 ± 3.5 °C (n = 78), respectively (mean ± standard deviation). The average 
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relative humidity was 54.1 ± 8.5 % (from JDN 166 to JDN 243, n=78). The daily 

maximum air temperature was above 37.5 °C between JDN 199 and 206. From JDN 

166 to JDN 243, the difference between the daily high and low temperatures was 18.8 

± 2.9 °C (n = 78) and the difference between the daily high and low relative humidity 

was 51.8 ± 9.1 % (n = 78). After JDN 216, the daily maximum and minimum air 

temperatures began to decrease. Figure 2 shows the values and the range of the air 

temperature and relative humidity recorded near the leaves (microclimate), during 

each of the measurement periods. The air temperatures varied from 20.7 oC to 38.4 
oC. The relative humidity varied from 26.8% to 61.2%.  

3.2 Effect of the light conditions and the side of the leaf on Twet and Tdry  

Figure 4 illustrates the effect of the light conditions and the side of the leaf on Tdry and 

Twet for P. dulcis. At each date of measurement, no significant effect (p < 0.05) of the 

side of the leaf (upper or lower) was observed for Tdry and Twet. Thus, the same model 

can be used for either side of the leaf to simulate the thermal temperature of non-

transpiring (Tdry) or wet (Twet) reference leaves. As expected, there was a significant 

effect of the light (sun and shade) on Tdry and Twet (p < 0.0001, ANOVA, n = 12). In 

sunny conditions, Tdry and Twet reached about 34.3 oC and 20.1 oC on average across 

all samples, respectively. In shady condition, Tdry and Twet reached about 23.1 oC and 

14.7 oC on average, respectively.  

3.3 Comparison of the relationship between Tdry, Twet, Tref, and Tair 

Figure 5 compares the relationships between Tdry, Twet and Tair, and between Tdry, Twet 

and Tref. The relationship between Tdry and Tref was nearly linear, with linear and 

quadratic regression models both providing an R2adj value greater than 0.84 for the 

paper colors considered. Similarly, the relationship between Twet and Tref was nearly 

linear, where the linear model gave an R2adj > 0.71, and the quadratic model gave R2adj 

> 0.72 (Table 2 and 3, Sun/Shade models). Prediction of Tdry and Twet based on Tref 

was much better than basing the model on Tair. Linear and quadratic models of Tdry 

based on Tair both yielded an R2adj of 0.32, and linear and quadratic models of Twet 

based on Tair yielded an R2adj of 0.28 and 0.30, respectively. Fig. 5g shows that the 

line Tdry = Tair + 5oC (estimation of Tdry with a constant offset use by Cohen et al., 

2005) over-estimates Tdry in shaded conditions, and gives high variability given that a 

single value of Tair corresponds to many different values of Tdry.  
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Fig. 4: Effect of light conditions (sun or shade) and the side of the leaf (upper or lower) on the thermal 

temperature of non-transpiring (Tdry; a) or well-watered (Twet; b) leaves for Prunus dulcis during summer 2018. 

Results are separated by measurement period, which occurred at the end of July/beginning of August (Jul/Aug) or 

at the end of August (End_Aug). Bar heights are average values ± SD (n = 12). Significant differences are denoted 

by letters above bars (ANOVA, Tukey test). 
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Fig. 5: Relationship between Tdry (a, c, e) or Twet (b, d, f) and Tref (temperature of green (a and b), black (c and d) 

and white (e and f) reference paper) for the upper and lower sides of the leaf, in sunlit and shaded conditions. 

Relationship between Tdry (g) or Twet (h) and Tair (measured near the leaf with the thermo-hygrometer probe) for 

the upper and lower sides of the leaf, in sunlit and shaded conditions. Only the data employed in the calibration 

step of the models were used in these figures. For reference, curves are shown for Tdry = Tair + 5 oC (thin dotted 

line) representing the constant temperature offset approach (Cohen et al., 2005; g), Tair + 7 °C (g), Tair - 10 °C (h) 

representing the upper and lower thresholds according to the image processing of Meron (2010) (thin long dashed 

double dotted line), Tref + 7 °C (a) and Tref – 10°C (b) (thin long dashed double dotted line). 
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3.4 Choice of the reference surface 

The results of the covariance analysis used to study the effect of light conditions, side 

of the leaf, and thermal temperature of the reference surface are shown in Table 1. 

These results allow for a determination of whether one model can be used for both 

light conditions in the prediction of Tdry or Twet. For Tdry and Twet, no significant 

interaction (p > 0.05) between input variables was found between the factors. Thus, 

the slopes of the models are homogeneous. For green and white reference surfaces, a 

main significant effect (p < 0.001) was found with the ‘thermal T oC of the reference 

surface’ only. Thus, there is no difference in the y-intercept. As a result, only this 

variable was used in formulating the model, and the same model was proposed for 

both light conditions. For the black reference surface, main effects were found for 

‘light’ and ‘thermal T oC of the reference’ factors. Thus, the y-intercepts are different 

between shady and sunny conditions and two models were studied: one for sunny 

conditions  

 
Table 1: p-values of analysis of covariance and main interactions between factors (ANCOVA, n = 12) for the 

effect of light conditions (sun or shade), side of the leaf (upper or lower), and the thermal temperature of the 

reference surface. Significant values (p < 0.05) are underlined. 

 

 

Effects and interactions 

Tdry Twet 
Color of the reference Color of the reference 
Green  Black  White  Green  Black  White  

Thermal ToC of the reference 
surface [Tref] <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Light 0.392 0.015 0.137 0.307 0.049 0.245 
Side of the leaf 0.883 0.469 0.919 0.411 0.240 0.479 
[Tref] × Light 0.907 0.052 0.903 0.427 0.080 0.754 
[Tref] × Side of the leaf 0.926 0.669 0.940 0.810 0.695 0.990 
Light × Side of the leaf 0.701 0.455 0.936 0.944 0.750 0.904 
[Tref] × Light × Side of the leaf 0.806 0.528 0.759 0.891 0.869 0.867 
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Table 2: Evaluation of the performance of linear and non-linear models for Tdry under sunlit and shaded conditions, which were based on different reference surface types. The data were 

divided into subsets either for model fitting (n = 96) or model validation (n = 32). The chosen model is indicated in bold. 

The global goodness-of-fit of the model was evaluated by three statistics: the coefficient of determination adjusted, R2
adj; root mean squared error, RMSE; and the Willmott index of agreement, 

d. The predictive capacity was evaluated with an independent data sets using the same three indices: R2
adj, dP, RMSEP (root mean squared error of prediction). 

 Linear model (Tdry = a[Tref] + b) Non-linear model (Tdry = a[Tref]2 + b[Tref] + c) 
 Color of the reference surface Color of the reference surface 
 Green Black White Green Black White 
 Sun/Shade Sun Shade Sun/Shade Sun/Shade Sun/Shade Sun Shade Sun/Shade Sun/Shade 
Name of model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 
Description of the Tdry models 

a 
b 
c 

 
0.9717 
1.2213 

- 

 
0.6039 
9.6935 

- 

 
0.8500 
1.8533 

- 

 
0.7168 
4.9137 

- 

 
1.2989 

-3.2883 
- 

 
-0.0083 
1.4391 

-4.7355 

 
-0.0100 
1.4140 

-6.1970 

 
-0.0077 
1.1811 

-1.6036 

 
-0.0077 
1.2309 

-2.6380 

 
-0.0143 
2.0028 

-11.3929 
Fitting (three trees, n=96) 

R2
adj 

RMSE 
Sunny conditions 
Shady conditions 
All (sunny/shady conditions) 

d 
Sunny conditions 
Shady conditions 
All (sunny/shady conditions) 

 
0.9009 

 
3.5550 
1.2291 
2.6598 

 
0.9591 
0.9933 
0.9736 

 
0.5972 

 
3.7214 

- 
- 
 

0.9539 
- 
- 

 
0.8196 

 
- 

1.2586 
- 
 

- 
0.9932 

- 

 
0.8843 

 
3.8300 
1.3568 
2.8731 

 
0.9525 
0.9916 
0.9687 

 
0.8389 

 
4.3015 
2.1212 
3.3913 

 
0.9379 
0.9789 
0.9550 

 
0.9046 

 
3.3908 
1.4054 
2.5954 

 
0.9620 
0.9916 
0.9750 

 
0.6023 

 
3.6583 

- 
- 
 

0.9553 
- 
- 

 
0.8167 

 
- 

1.2551 
- 
 

- 
0.9932 

- 

 
0.8938 

 
3.6609 
1.2661 
2.7391 

 
0.9554 
0.9931 
0.9719 

 
0.8420 

 
4.0804 
2.3801 
3.3402 

 
0.9428 
0.9746 
0.9566 

Validation (one tree, n=32) 
R2

adj 
RMSEP 

Sunny conditions 
Shady conditions 
All (sunny/shady conditions) 

dP 
Sunny conditions 
Shady conditions 
All (sunny/shady conditions) 

 
0.9007 

 
3.5391 
0.9608 
2.5931 

 
0.9574 
0.9951 
0.9722 

 
0.6776 

 
4.0726 

- 
- 
 

0.9425 
- 
- 

 
0.9022 

 
- 

1.2009 
- 
 

- 
0.9926 

- 

 
0.8836 

 
4.2507 
1.4396 
2.8624 

 
0.9512 
0.9886 
0.9655 

 
0.9089 

 
3.1099 
1.7643 
2.5283 

 
0.9655 
0.9834 
0.9727 

 
0.9060 

 
3.5322 
0.9531 
2.5870 

 
0.9566 
0.9954 
0.9725 

 
0.6620 

 
4.2138 

- 
- 
 

0.9389 
- 
- 

 
0.9046 

 
- 

1.2134 
- 
 

- 
0.9924 

- 

 
0.8700 

 
4.1911 
1.1718 
3.0772 

 
0.9398 
0.9930 
0.9613 

 
0.9014 

 
3.2075 
1.9065 
2.6385 

 
0.9627 
0.9817 
0.9706 



 
 
 

50 
Agricultural Water Management     (2020) xxx, xxx-xxx 
https://doi.org/ 

and one for shady conditions. However, we have also proposed a single model for the 

both light conditions with the black reference surface to verify if a single model is 

adequate.  

3.5 Calibration and validation of the model for Twet and Tdry 

Table 2 presents and compares five linear models and five quadratic models, the 

simplest non-linear models, without interaction, used to predict Tdry for P. dulcis 

according to the three reference surfaces. The models that use the green reference 

surface temperature are the best models for Tdry (linear and quadratic models, Table 

2). Furthermore, the three error metrics showed only a very slight difference between 

the linear model (R2adj = 0.9009, d = 0.9736, RMSE = 2.6598) and the quadratic 

model (R2adj = 0.9046, d = 0.9750, RMSE = 2.5954). Thus, we have chosen to 

continue our study with the linear model no1 (the simplest model), that uses the green 

reference surface as the independent variable: 

 

Tdry = 0.9717 × [Trefgreen] + 1.2213,       (9) 

 

where Trefgreen is the thermal temperature of the green paper reference surface (oC).  

For P. dulcis, the linear model explained a high percentage of the variance (R2 adj = 

0.9009) with a highly significant effect of Trefgreen (p < 0.0001). The RMSE and d 

were 2.66 oC and 0.97 (respectively) over values ranging from 14 oC to 48 oC (Fig. 6a, 

Table 2). The RMSEP and dP were similar at 2.59 oC and 0.97 (respectively) over 

values ranging from 13 oC to 44 oC, showing good predictive performance (Fig.6b, 

Table 2).  

Table 3 presents and compares five linear models and five quadratic models, the 

simplest non-linear models, without interaction, used to predict Twet according to three 

reference surfaces (green, black and white) for P. dulcis. The models that use the 

green reference surface temperature are also the best models for Twet (linear and 

quadratic models, Table 3). The three error metrics showed only a very slight 

difference between the linear model (R2adj = 0.7609,  
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Fig. 6: Comparison between the actual and modelled thermal temperature of non-transpiring (Tdry; a and b) or 

wet (Twet; c and d) leaves for Prunus dulcis. The models (Eqns. 9 and 10) included one independent variable: the 

thermal temperature of a green reference surface (Trefgreen) placed within the thermal image. Panes a and c are 

based on the “fitting” data subset (n = 96); b and d are based on the “validation” data subset (n = 32). 
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Table 3: Evaluation of the performance of linear and non-linear models for Twet under sunlit and shaded conditions, which were based on different reference surface types. The data were 

divided into subsets either for model fitting (n = 96) or model validation (n = 32). The chosen model is indicated in bold. 

The global goodness-of-fit of the model was evaluated by three statistics: the coefficient of determination adjusted, R2
adj; root mean squared error, RMSE; and the Willmott index of agreement, 

d. The predictive capacity was evaluated with an independent data sets using the same three indices: R2
adj, dP, RMSEP (root mean squared error of prediction). 

 Linear model (Twet = a[Tref] + b) Non-linear model (Twet = a[Tref]2 + b[Tref] + c) 
 Color of the reference surface Color of the reference surface 
 Green Black White Green Black White 
 Sun/Shade Sun Shade Sun/Shade Sun/Shade Sun/Shade Sun Shade Sun/Shade Sun/Shade 

Name of the model Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model 19 Model 20 
Description of the Twet models 

a 
b 
c 

 
0.6238 
2.4803 

- 

 
0.3562 
9.1239 

- 

 
0.5634 
2.5669 

- 

 
0.4495 
5.1749 

- 

 
0.8391 

-0.5363 
- 

 
-0.0085 
1.1006 

-3.5969 

 
-0.0101 
1.1797 

-7.0312 

 
-0.0110 
1.0344 

-2.3509 

 
-0.0068 
0.9022 

-1.4744 

 
-0.0128 
1.4689 

-7.7882 
Fitting (three trees, n=96) 

R2
adj 

RMSE 
Sunny conditions 
Shady conditions 
All (sunny/shady conditions) 

d 
Sunny conditions 
Shady conditions 
All (sunny/shady conditions) 

 
0.7609 

 
3.1172 
2.6274 
2.8827 

 
0.9255 
0.9322 
0.9284 

 
0.3831 

 
3.3588 

- 
- 
 

0.9085 
- 
- 

 
0.2736 

 
- 

2.8250 
- 
 

- 
0.9225 

- 

 
0.7122 

 
3.4411 
2.8573 
3.1627 

 
0.9064 
0.9155 
0.9103 

 
0.7175 

 
3.3277 
2.9258 
3.1332 

 
0.9131 
0.9114 
0.9124 

 
0.7686 

 
2.9809 
2.6512 
2.8209 

 
0.9298 
0.9348 
0.9321 

 
0.3966 

 
3.2857 

- 
- 
 

0.9138 
- 
- 

 
0.2593 

 
- 

2.8217 
- 
 

- 
0.9226 

- 

 
0.7260 

 
3.2941 
2.8264 
3.0692 

 
0.9116 
0.9232 
0.9169 

 
0.7225 

 
3.1501 
3.0266 
3.0890 

 
0.9199 
0.9106 
0.9157 

Validation (one tree, n=32) 
R2

adj 
RMSEP 

Sunny conditions 
Shady conditions 
All (sunny/shady conditions) 

dP 
Sunny conditions 
Shady conditions 
All (sunny/shady conditions) 

 
0.8304 

 
2.4707 
2.0249 
2.2588 

 
0.9506 
0.9547 
0.9524 

 
0.2708 

 
3.0427 

- 
- 
 

0.9208 
- 
- 

 
0.4592 

 
- 

2.3226 
- 
 

- 
0.9419 

- 

 
0.7491 

 
3.0785 
2.4113 
2.7651 

 
0.9194 
0.9315 
0.9245 

 
0.7845 

 
2.5379 
2.5845 
2.5613 

 
0.9454 
0.9262 
0.9371 

 
0.8544 

 
2.2762 
1.9171 
2.1043 

 
0.9568 
0.9625 
0.9594 

 
0.2897 

 
3.0870 

- 
- 
 

0.9216 
- 
- 

 
0.5071 

 
- 

2.2167 
- 
 

- 
0.9468 

- 

 
0.7700 

 
3.0430 
2.2587 
2.6797 

 
0.9218 
0.9460 
0.9325 

 
0.7957 

 
2.4389 
2.5770 
2.5089 

 
0.9488 
0.9316 
0.9410 
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Table 4: Validation and generalization test of the chosen models to predict Tdry (model no1) and Twet (model no11) on the leaves of five other hypostomatous species trees under sunlit and 

shaded conditions (n = 102; Nerium oleander, Olea europaea, Prunus persica, Quercus sp., Ulmus hybrid ‘frontier’). 

 

 

 Validation with other species 
 R2

adj RMSEP dP 
[Trefgreen] = Thermal ToC of green reference surface  Sun Shade Sun/Shade Sun Shade Sun/Shade 
Model 1 (Model of Tdry) 

Tdry = 0.9717[Trefgreen] + 1.2213 
Global (n=102) 

Nerium oleander (n=8shade;10sun) 
Olea europaea (n=9shade; 9sun) 

Prunus persica (n=12shade; 12sun) 
Quercus sp. (n=9shade; 9sun) 

Ulmus hybrid ‘frontier’(n=12shade; 12sun) 

 
 
0.8843 
0.6584 
0.8057 
0.9423 
0.8934 
0.8840 

 
 
3.2781 
5.2463 
3.2028 
2.8258 
1.5949 
2.4580 

 
 
1.3449 
0.8479 
0.8440 
1.8202 
1.5238 
1.2117 

 
 
2.5229 
3.9510 
2.3421 
2.3768 
1.5598 
1.9378 

 
 
0.9546 
0.8460 
0.8574 
0.9841 
0.9663 
0.9770 

 
 
0.9808 
0.9906 
0.9942 
0.9786 
0.9627 
0.9688 

 
 
0.9618 
0.8830 
0.9436 
0.9828 
0.9646 
0.9758 

Model 11 (Model of Twet) 
Twet = 0.6238[Trefgreen] + 2.4803 

Global (n=102) 
Nerium oleander (n=8shade;10sun) 

Olea europaea (n=9shade; 9sun) 
Prunus persica (n=12shade; 12sun) 

Quercus sp. (n=9shade; 9sun) 
Ulmus hybrid ‘frontier’ (n=12shade; 12sun) 

 
 
0.7568 
0.6603 
0.7660 
0.9209 
0.6672 
0.7061 

 
 
2.5519 
2.4547 
1.2694 
2.9286 
3.0692 
2.5194 

 
 
2.2495 
2.1801 
1.3959 
1.4728 
2.5347 
3.0768 

 
 
2.4084 
2.3366 
1.3342 
2.3179 
2.8147 
3.0802 

 
 
0.9391 
0.9111 
0.9409 
0.9662 
0.6813 
0.9427 

 
 
0.8961 
0.8085 
0.9609 
0.9716 
0.8785 
0.7136 

 
 
0.9260 
0.8878 
0.9538 
0.9674 
0.8827 
0.8901 
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d = 0.9284, RMSE = 2.8827) and the quadratic model (R2adj = 0.7686, d = 0.9321, 

RMSE = 2.8209). Likewise, we have chosen to continue our study with the linear 

model no11 (the simplest model), that uses the green reference surface as the 

independent variable: 

 

Twet = 0.6238 × [Trefgreen] + 2.4803.      (10) 

 

For P. dulcis, the linear model explained a large percentage of the variance (R2 adj = 

0.7609) with a highly significant effect of [Trefgreen] (p < 0.0001). The RMSE and d 

were acceptable at 2.88 oC and 0.93 (respectively) over values ranging from 11 oC to 

33 oC (Fig. 6c, Table 3). The RMSEP and dP were also acceptable at 2.26 oC and 0.95 

(respectively) over values ranging from 10 oC to 30 oC, showing the applicability for 

data independent of that used to build it (Fig. 6d, Table 3). For all studied models, the 

fit of the models of Tdry and Twet was better for the shady conditions than the sunny 

conditions (Table 2 and Table 3). 

3.6 Generalization to other species 

We tested the previous models (model n°1 and model n°11) on additional data to 

evaluate the generalization of the models to others hypostomatous species and at other 

nearby locations. Figure 7 shows the relationship between measured and modeled Tdry 

and Twet for N. oleander, O. europaea, P. persica, Q. sp. and U. hybrid ‘frontier’. For 

model n°1 (model of Tdry), the overall of RMSEP and dP were 2.52 oC and 0.96, 

respectively, over values ranging from 12 oC and 43 oC (Table 4), which was very 

close to the 2.59 oC RMSEP value found for P. dulcis (Table 2). For model n°11 

(model of Twet), the overall RMSEP and dP were 2.41 oC and 0.93 (respectively) over 

values ranging from 9 oC to 29 oC (Table 4), which was close to the 2.26 oC RMSEP 

value found for P. dulcis (Table 3). These results showed the generalization of the 

linear models to other species and other locations. As mentioned previously, the fit of 

the models is better for the shady conditions than the sunny conditions. Among the 

other studies species, P. persica showed the best R2adj and dP (R2adj = 0.9423 and 

0.9209; dP = 0.9828 and 0.9674, for Tdry and Twet, respectively). 
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Fig. 7: Comparison between the actual and modelled thermal temperature of non-transpiring (Tdry; a) and well-

watered (Twet; b) leaves for hypostomatous species Nerium oleander, Olea europaea, Prunus persica, Quercus sp., 

Ulmus hybrid ‘frontier’. The models (Eqns. 9 and 10) were parameterized based on data from Prunus dulcis and 

included one independent variable: the thermal temperature of a green reference surface (Trefgreen) placed within 

the thermal image. 
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Fig. 8: Sensitivity analysis of the CWSIs in the sun (a) and in the 

shade (b). Percentage variation of the CWSI (average ± SD, n = 

12) due to a ± 10% variation of the temperature of the green 

reference (Trefgreen) with TL held constant for four CWSIs (CWSI1 

= (Tdry - TL) / Tdry, CWSI2 = (TL - Tdry) / (Twet - Tdry), CWSI3 = (TL - 

Twet) / Twet, IG = (Tdry - TL) / (TL - Twet)). The x- and y-axis crossing 

at 0 are indicated with dashed thin lines. (c) Sobol sensitivity 

indices (first and total orders; with the formulas of Martinez 

(2011)) of the two parameters Trefgreen (range for the sensitivity 

analysis: [20 – 45] oC) and TL (range for the sensitivity analysis: 

[20 – 45] oC) used in the calculation of the four CWSIs (CWSI1, 

CWSI2, CWSI3 and IG). 
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3.7 Sensitivity analysis of four Crop Water Stress Indices (CWSIs)  

Figures 8a (sunlit) and 8b (shaded) show the effect of varying the temperature of the 

green reference surface (Trefgreen) on four CWSIs with TL fixed. Over the range of -

10% to +10% and for the two light conditions, the four indices vary significantly (p < 

0.001) (Fig. 8a and 8b). In the sun, IG was the index most influenced by a variation of 

+10% of the input Trefgreen (+129%) and CWSI3 the least influenced index (-66%, p < 

0.012). For a variation of -10% of the input Trefgreen, CWSI3 was the least influenced 

index (+79%, p < 0.001) as opposed to -94%, -94%, -102% for CWSI1, CWSI2, IG, 

respectively (Fig. 8a). In the shade, IG was also the index most influenced by a 

variation of +10% of the input Trefgreen (+358%; p < 0.047) and CWSI3 the least 

influenced index (-47%; p < 0.009). For a variation of -10% of the input Trefgreen, 

CWSI3 was the least influenced index (+56%; p < 0.001) as opposed to -110% for 

CWSI1, CWSI2 and IG (no significative difference between these three CWSIs, p > 

0.89; Fig. 8b). 

Figure 8c shows the results of the Sobol sensitivity analysis (with the formulas of 

Martinez (2011)) for four CWSIs with variation of parameters Trefgreen and TL. Sobol’s 

method determines the contribution of each input parameter (Trefgreen and TL) to 

overall output variance (first-order sensitivity index) and their interactions (total-order 

sensitivity index). For CWSI1 and CWSI2, the results indicate that Trefgreen is the most 

important parameter, individually contributing to around 50% of both outputs (CWSI) 

and TL contributing to around 48% and 46% of the output, respectively. In other 

words, most of the variation in these CWSIs was due to Trefgreen. For CWSI3, the result 

indicates that TL is the most important parameter, individually contributing to around 

52% of the output (CWSI). In other words, most of the variation in this CWSI was 

due to TL. On the other hand, CWSI3 presents the biggest difference between the first-

order sensitivity indices of Trefgreen and TL (46% and 52%, respectively). For CWSI1, 

CWSI2 and CWSI3, both the first-order sensitivity indices and the total-order 

sensitivity indices have similar values, which indicates no significant second-order 

interaction between Trefgreen and TL. IG, Trefgreen and TL have no main effects (first-order 

sensitivity index of IG << 0.05 for both parameters). However, the values of the total-

order sensitivity indices are close to 1 indicating that the variance of IG was driven 

mainly by the second-order interaction between Trefgreen and TL (Fig. 8c). As illustrated 

graphically in Fig. 8c, the ratio between the sensitivity of CWSI to TL and Trefgreen is 
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largest for CWSI3. This means that CWSI3 is likely to be least sensitive (in a relative 

sense) to errors in the estimation of reference temperatures via Trefgreen. 

 

4. DISCUSSION 

4.1 Effect of the light conditions on Tdry and Twet 

Our results indicated a significant effect of the light conditions on Tdry and Twet, and 

the fit of the model is better for the data recorded in the shade than in the sun, which 

is in agreement with previously reported results (Ansari and Loomis, 1959; Atkin et 

al., 2000; Niesenbaum and Kluger, 2006). For example, Dhillon et al. (2014) found 

an analogous result for a multiple linear regression model for leaf temperature as a 

function of mid-day stem water potential and environmental variables, in which the 

R2 was better for shaded leaves than for sunlit leaves. They suggested that the 

influence of factors such as sun angle and leaf orientation were stronger in the case of 

sunlit leaves, as PAR was found to be significant in all sunlit leaf models. Other 

previous studies also indicated that at a low irradiance (i.e., shade), the variance in 

temperature declines to low levels and at the high irradiance (i.e., full sun), the 

variance is amplified by decreasing irradiance within the canopy (Ngao et al., 2017). 

More diffuse irradiance homogenizes the leaf temperatures because shaded leaves 

receive proportionally more radiative energy under those conditions (Woods et al., 

2017). That could explain the differences observed in the fit of the models in the sun 

and shade. Although light has a strong effect on the temperature of the well-watered 

and non-transpiring leaves (Tdry and Twet), the model that relates the reference 

temperature to Tdry and Twet is the same. This has important practical implications, 

particularly if the method is applied to a whole tree/plant that contains both sunlit and 

shaded leaves in one image. 

4.2 Effect of the side of the leaf on Tdry and Twet 

Almond leaves are hypostomatous (Palasciano et al., 2005), i.e., the stomata are 

mostly on the lower side of the leaf. Our results showed that the thermal temperature 

of the leaf is approximately the same on the both sides of the leaf for Tdry and Twet. 

Pallas et al. (1967) found that in cotton plants (Gossypiunt hirsutum L.) differences in 

temperature between the upper and lower leaf surfaces could reach 2 oC, where the 

upper surface was warmer than the lower when the leaf was well-hydrated, and the 

converse was true under drought stress conditions. They also reported that the 
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temperature differences between the upper and lower surfaces were only significant 

under high light conditions. The authors attributed these differences to a combination 

of differential heating due to radiation, differential cooling due to radiation, and 

changes in leaf angle mediated by turgor changes. However, their results could also 

be explained by radiation error of the thermocouple which has been reported to cause 

similar magnitude errors (Bailey et al., 2016) combined with varying leaf angle that 

could change the nature of the radiation error. The ability to assume the same 

temperature for upper and lower faces of the leaf is potentially important for 

application of thermal imaging in whole-plants or -canopies because any given view 

of the vegetation may contain both upper and lower leaf surfaces. If, as our results 

suggest, differences in leaf temperature between upper and lower leaf faces are small, 

then this eliminates an additional variable that would need to be accounted for when 

processing the thermal images. 

4.3 Model of Tdry and Twet to increase ease-of-use 

One goal of this work was to determine artificial reference surfaces that could be 

easily used (without any further measurement) to estimate Tdry and Twet, and thus 

make the CWSI approach easier to apply in the field, particularly by growers. We 

developed simple models to predict Tdry and Twet (during the growing season) based 

only on the temperature of a green paper reference surface (Trefgreen) under the same 

conditions as the leaf being examined. The proposed models are relatively simple in 

that they are linear equations with only Trefgreen as the independent variable. The 

models were calibrated, validated and tested with data recorded under a wide range of 

air temperature and relative humidity conditions (Fig. 2). Although it was not possible 

to test the model for all possible environmental conditions, it was shown to perform 

well at three different times during the growing season and across six different 

species.  

It is perhaps surprising the wet reference temperature can be estimated using the 

temperature of a dry piece of paper because it would seemingly lack the effect of 

evaporation. Poirier-Pocovi and Bailey (2020) showed that, when in sunlight, Twet is 

only weakly dependent on relative humidity. As with Tdry, Twet is driven primarily by 

air temperature and wind speed in direct sunlight. Since the green reference surface 

also includes these environmental factors, a model based on Trefgreen is able to explain 

most of the variation in Twet. 
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A common approach for estimating Tdry is to assume that Tdry is a constant offset 

above the air temperature (e.g., Tdry = Tair + 5 oC; Cohen et al., 2005). This approach 

presents several possible problems. Several environmental variables such as the light, 

the wind speed, or the relative humidity can influence the difference between the 

surface temperature of the leaf reference and the air temperature. Indeed, if the 

constant temperature offset approach is applied, Figures 5g show that the values of 

Tdry are over estimated in the shade. Also, high variability of Tdry was observed for the 

same value of Tair, which is not present for the models based on Trefgreen. Some studies 

such as Meron et al. (2010) in cotton or García-Tejero et al. (2012) in almond trees 

developed an empirical methodology for canopy temperature extraction using thermal 

images and air temperature. The proposed methodology was based on the separation 

of the canopy-related pixels in the thermal image from those of the soil and other 

objects by upper and lower thresholds to air temperature. Our results indicate that it 

would probably be better to use Tref in this step of processing images. Indeed, if Tair is 

used in the upper and lower thresholds, a lot of interesting data would be deleted 

during the pixel filtering process (Fig. 5g, 5h); less data would be lost with Tref (Fig. 

5a, 5b). 

Furthermore, by using temperature measurements from different instruments in the 

CWSI, systematic errors in the temperature measurements will not necessarily cancel 

such as absolute errors in the thermographic measurement. The method proposed in 

this work requires only slightly more effort to apply than the constant temperature 

offset method, but it also takes into account important environmental variables that 

influence Tdry and Twet.  

4.4 Performance of these new models in the estimation of four crop water stress 

indices for almond trees  

Previous work does not exist in the literature regarding thorough analysis of the 

sensitivity of CWSIs to errors in estimation of Tdry and Twet reference temperatures. 

Our new results suggest that IG is the most sensitive index to the variation of input 

Trefgreen (Fig. 8a, 8b) and the output value is influenced by the interaction between 

Trefgreen and TL (Fig. 8c). In the definition of this index, Tdry is only in the numerator 

and thus its influence is much more important. In the other indices, Tdry is present in 

the numerator and denominator of the equation (CWSI1 and CWSI2) or absent 

altogether (CWSI3), which limits the ultimate influence of Tdry on the estimation of the 
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crop water stress index. The sensitivity to IG was markedly different from the other 

three, because TL is present in both the numerator and denominator, which means that 

its influence on the CWSI comes in through relative interactions with Twet and Tdry. 

The sensitivity analysis showed that CWSI3 was most sensitive to TL out of CWSI1, 

CWSI2 and IG. Its evolution seems to better reflect the changes of the leaf temperature. 

Since the estimation of reference surface temperatures will always incur some error in 

estimating CWSIs, we seek a CWSI that has maximum sensitivity to TL (which is 

directly measured) and minimum sensitivity to the reference temperature (in our case 

estimated from Trefgreen). Thus, based on our sensitivity analysis, CWSI3 appears most 

suitable because it has both of these characteristics. Additional experiments are 

necessary to verify if CWSI3 can be used to estimate the water needs and manage the 

irrigation of the almond trees. 

 

5. CONCLUSION 

The present study proposes a methodology for modeling the reference temperatures 

Tdry and Twet commonly used in CWSIs. It was determined that Tdry and Twet could be 

related to the temperature of a green piece of paper using simple linear models. This 

approach was developed using almond trees and tested on other five other species. We 

also analyzed the sensitivity of these models in the estimation of four CWSIs, 

including a new CWSI, denoted as CWSI3, based only on TL and Twet. A sensitivity 

analysis indicated that CWSI3 appeared promising in that it had the highest sensitivity 

to TL but had the lowest sensitivity to the temperature of the reference paper Trefgreen.  

Our study is an initial step toward improving the accessibility and adoption of 

thermography-based irrigation management tools by growers by making them easier 

to use and less expensive. Additional work is needed to evaluate the performance of 

the new index CWSI3 in estimating tree water status and associated irrigation needs, 

and to further evaluate the approach over seasonal time periods. There is potential to 

scale up the approach to the field level using airborne sensing platforms by placing a 

large green surface of paper in the orchard and using the new models of Tdry and Twet 

to define the wet and dry leaf reference surface temperatures.  
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